
Compact Implementation of Modular
Multiplication for Special Modulus on MSP430X

Hwajeong Seo1⋆, Kyuhwang An1, Hyeokdong Kwon1, and Zhi Hu2

1 Hansung University, Republic of Korea
hwajeong84@gmail.com, tigerk9212@gmail.com, hdgwon@naver.com

2 Central South University, China
huzhi math@csu.edu.cn

Abstract. For the pre/post-quantum Public Key Cryptography (PKC),
such as Elliptic Curve Cryptography (ECC) and Supersingular Isogeny
Diffie–Hellman key exchange (SIDH), modular multiplication is the most
expensive operation among basic arithmetic of these cryptographic schemes.
For this reason, the execution timing of such cryptographic schemes in an
implementation level, which may highly determine the service availability
for the low-end microprocessors (e.g., 8-bit AVR and 16-bit MSP430X),
is mainly relied on the efficiency of modular multiplication on the target
processors.

In this paper, we present new optimal modular multiplication techniques
based on interleaved Montgomery multiplication on 16-bit MSP430X mi-
croprocessors, where the multiplication part is performed in a hardware
multiplier and the reduction part is performed in a basic Arithmetic
Logic Unit (ALU) with optimal modular multiplication routine, respec-
tively. This approach is effective for special modulus of NIST curves, SM2
curves, and SIDH. In order to demonstrate the superiority of proposed
Montgomery multiplication, we applied the proposed method to the
NIST P–256 curve, of which the implementation improves the previous
modular multiplication and squaring operations by 39% and 37.1% on
16-bit MSP430X microprocessors, respectively. Moreover, secure coun-
termeasures against timing attack and simple power analysis is also ap-
plied to the scalar multiplication of NIST P–256, which achieves the
9,285,578 clock cycles and only requires 0.575 seconds (@16MHz). The
proposed Montgomery multiplication has broad applications to other
cryptographic schemes and microprocessors.

Keywords: Montgomery Multiplication, Public Key Cryptography, MSP430X,
Software Implementation

1 Introduction

Internet of Things (IoT) technology has been actively studied in academic and
industry fields due to its useful applications, ranging from home automation,

⋆ Corresponding Author



2 Hwajeong Seo, Kyuhwang An, Hyeokdong Kwon, and Zhi Hu

surveillance system, and health–care services. Unlike traditional service models,
the IoT applications are able to provide highly customized services for each user
by recognizing the customer’s needs or preferences through actively collected
data from remotely deployed IoT devices. However, the low-end IoT sensors are
usually placed in the public space (building, road, and street), which are easily
accessible and manipulated by any legitimate or malicious users. If the adver-
saries illegally capture the installed IoT devices and perform the sophisticated
reverse engineering or any effective hacking measures, the secret information can
be easily leaked.

In order to prevent the potential threats, the information of the IoT de-
vices should be securely encrypted through the cryptography algorithm, namely
Public Key Cryptography (PKC). However, the PKC requires the complicated
computations and the low-end IoT devices have very limited resources, in terms
of storage, energy, and computation power. In order to meet the sufficient service
availabilities, the careful optimization techniques of implementations should be
considered. The PKC instantiations such Elliptic Curve Cryptography (ECC) in
pre-quantum case or Supersingular Isogeny Diffie–Hellman key exchange (SIDH)
in post-quantum case highly rely on the efficient implementation of modular
multiplication, which is the most expensive operations in finite field arithmetic.
For this reason, the execution timing of modular multiplication determines the
service availability for the low-end microprocessors (e.g., 8-bit AVR and 16-bit
MSP430X embedded processors).

In this paper, we present new optimal modular multiplication techniques
based on interleaved Montgomery multiplication on 16-bit MSP430X micropro-
cessors, which are effective for special modulus of NIST curves, SM2 curves,
and SIDH. In the proposed interleaved Montgomery multiplication, the multi-
plication part is performed in a hardware multiplier, while the reduction part is
performed in a basic Arithmetic Logic Unit (ALU) with optimal routine. Spe-
cially, we applied the proposed method to the NIST P–256 curve, of which the
implementation improves the previous modular multiplication and squaring op-
erations by 39% and 37.1% for 16-bit MSP430X microprocessors, respectively.
Moreover, secure countermeasures against timing attack and simple power anal-
ysis are applied to the scalar multiplication on NIST P–256 curve, which achieves
the 9,285,578 clock cycles and only requires 0.575 seconds (@16MHz). Our im-
plementations imply that the proposed Montgomery multiplication would have
broad applications to more cryptographic schemes (e.g., SM2 and SIDH) and
microprocessors (e.g., 8-bit AVR).

The rest of this paper is organized as follows. In Section 2, we explore the
previous works of Montgomery multiplication and target MSP430X processor.
In Section 3, we present implementations of Montgomery multiplication and
NIST P-256 on the MSP430X processor. In Section 4, we evaluate the proposed
implementations on the target embedded processors. Finally, we conclude the
paper in Section 5.



Modular Multiplication on MSP430X 3

Algorithm 1 Calculation of the Montgomery reduction

Require: An odd m-bit modulus M , Montgomery radix R = 2m, an operand T where
T = A · B or T = A · A in the range [0, 2M − 1], and pre-computed constant
M ′ = −M−1 mod R

Ensure: Montgomery product Z = MonRed(T,R) = T ·R−1 mod M
1: Q← T ·M ′ mod R
2: Z ← (T +Q ·M)/R
3: if Z ≥M then Z ← Z −M end if
4: return Z

2 Preliminaries and Related Works

2.1 Montgomery Multiplication

The modular reduction in School-book approach requires an expensive division
operation, which is a high overheads on the low-end devices. Such expensive
division operation can be transformed to the relatively cheap multiplication op-
eration through Montgomery reduction, of which the detailed description is given
in Algorithm 1.

The Montgomery reduction is proceeded as: given the intermediate result of
multiplication T = A · B or T = A · A (where A and B are operands), T is
multiplied by the inverse of modulus (M ′) and then the results are reduced by
R and stored into Q. Afterward, the equation ((T + Q ×M)/R) is performed.
Finally, the calculation of the Montgomery multiplication may require a final
subtraction of the modulus (M) to get a reduced result in the range of [0,M).
Recently, Gueron and Krasnov presented the implementation of Montgomery
multiplication friendly modulus [6]. When the modulus has a special pattern
(0xFFFFFFFF in hexadecimal), this can be performed in addition and subtraction
operations rather than multiplication. The approach is widely used in recent
ECC and SIDH implementations and shows the highest performance [9, 4, 8, 2,
10].

2.2 Target Processors

The MSP430 family of microcontrollers are widely used in IoT fields, such as
small satellite applications [12]. The most popular IoT platform is TelosB and
TmoteSky. The MSP430 microcontrollers have 16-bit instruction sets and 12
general-purpose registers. The specifications of clock frequency and ROM/RAM
varies for each model. The MSP430 supports a number of instruction sets, includ-
ing addition, subtraction, and basic operations. The detailed basic arithmetic is
given in Table 1.

In particular, the integer multiplication is carried out with a memory–mapped
hardware multiplier. The cost of multiplication is the cost of writing the operands
and reading the result to/from a multiplier’s memory address in the MSP430



4 Hwajeong Seo, Kyuhwang An, Hyeokdong Kwon, and Zhi Hu

Table 1. Instruction set summary for MSP

asm Operands Description Operation #Clock

ADD Rr, Rd Add without Carry Rd ← Rd+Rr 1

ADDC Rr, Rd Add with Carry Rd ← Rd+Rr+C 1

SUB Rr, Rd Sub without Borrow Rd ← Rd-Rr 1

SUBC Rr, Rd Sub with Borrow Rd ← Rd-Rr-B 1

MOV Rr, Rd Move Rd ← Rr 1

CLR Rd Clear Rd ← 0 1

embedded processors. The operands can be accessed by four different address-
ing modes, including register direct, indexed, register indirect, and indirect with
auto-increment.

Recently, advanced MSP430X microcontrollers have been introduced. The
MSP430X supports 20-bit addressing pointers and a new 32-bit hardware mul-
tiplier. This sophisticated 32-bit hardware multiplier significantly improves the
performance of traditional MSP430 implementation based on 16-bit hardware
multiplier. The hardware multiplier supports both 32-bit multiplication and 32-
bit Multiplication & ACcumulation (MAC) modes. In order to select the mul-
tiplication modes, the 32-bit operands should be written into specific memory
addresses (multiplication: MPY32L, MPY32H, MAC: MAC32L, MAC32H) by two 16-
bit. Particularly, the MAC mode efficiently accumulates the intermediate results
into the result memory (RES0, RES1, RES2, RES3) and sets the carry bit into
the carry memory (SUMEXT). The multiplier is triggered by writing the 32-bit
operands into the operand memory (OP2L, OP2H). Afterward, the 65-bit results
are accessible through result and carry memory addresses (RES0, RES1, RES2,
RES3, SUMEXT).

Many previous works used the product-scanning multiplication over MSP430X
hardware multiplier since the MAC mode efficiently accumulates the intermedi-
ate results in a column-wise fashion with small number of memory accesses [5,
14]. In this work, we also adopted the product-scanning method for multiplica-
tion, but we used a basic ALU for reduction over the MSP430X microprocessors
for special modulus.

3 Proposed Montgomery Multiplication

In this section, we explore the efficient implementation of Montgomery multi-
plication for special modulus. The target modulus consists of special patterns
(0x00000000, 0x00000001, and 0xFFFFFFFF in hexadecimal), which can be per-
formed in simple addition and subtraction operations rather than complicated
multiplication. Though we target the NIST P–256, the proposed method can be
applied to the other cryptographic algorithms, such as SM2 and SIDH.



Modular Multiplication on MSP430X 5

3.1 Constant Modular Addition/Subtraction for Special Modulus

Finite field addition (resp. subtraction) operation requires the final subtraction
(resp. addition) with target modulus after addition (resp. subtraction) to fit
the intermediate results in the range of target field. When the data format is
unsigned, the reduced result should not generate the overflow bits. If we perform
the conditional final subtraction or addition operation, the execution timing or
power consumption becomes varied depending on the conditional statements.
Since the program routines are highly correlated with secret values, the adversary
may get the secret information from conditional execution of final subtraction
for reduction [18].

In order to avoid the conditional statements, the constant-time reduction is
introduced by Liu et al. in [11], which utilizes the conditional reduction (i.e.
a multi-precision subtraction) of field arithmetic with the mask. After execut-
ing the first part of modular addition (i.e. A + B), it first generates the 2’s
complement of carry, and it can be the value (mask). When the carry bit is
set, the mask is always set to 0xFF. Otherwise, the value is set to zero (0x00).
The masked modulo is then subtracted without the comparison. In [19], the
optimized reduction technique for special modulus is introduced. For the NIST
P-256 curve, the modulus p256 = 2256 − 2224 +2192 +296 − 1 can be rewritten as
0xFFFFFFFF00000001000000000000000000000000FFFFFFFFFFFFFFFFFFFFFFFF

in hexadecimal 3, which consists of only three special patterns as 0xFFFF, 0x0000,
and 0x0001, in 16-bit wise hexadecimal way. Among them two patterns (i.e.
0xFFFF and 0x0001) are only masked and utilized them for reduction since
0x0000 pattern does not require the masked reduction. These features are highly
utilized in MSP430X microprocessors. The pattern (0x0001) is obtained from
carry and the remaining pattern is obtained through one subtraction with ZERO

register and CARRY register (i.e. 0x0000 - 0x0001 = 0xFFFF). The details are
given in Algorithm 2.

As above demonstration, the MASK register is firstly set to zero, and then
subtracted by CARRY register. When the CARRY register is set to 1, the MASK reg-
ister is always set to 0xFFFF (in hexadecimal). Otherwise, both CARRY and MASK

registers are set to 0. By using an efficient memory based operation of MSP430X
processor, the masked values are directly subtracted from the intermediate re-
sults (i.e. RESULT). For the case of modular subtraction, the borrow bit is used
for MASK register and the least significant bit of MASK register is extracted to
CARRY register through AND instruction with value (0x0001).

3.2 Interleaved Montgomery Multiplication/Squaring for Special
Modulus

Generic n-word Montgomery multiplication requires (n2+n) multiplication. The
Montgomery multiplication consists of multiplication and reduction parts. Both

3 SM2 curve also has similar special patterns of modulus (0xFFFFFFFEFFFFFFFF
FFFFFFFFFFFFFFFFFFFFFFFF00000000FFFFFFFFFFFFFFFF).



6 Hwajeong Seo, Kyuhwang An, Hyeokdong Kwon, and Zhi Hu

Algorithm 2 Masked subtraction for NIST P-256 on MSP430X

Input: carry register (CARRY), temporal
register (MASK)

Output: result pointer (RESULT)
1: CLR MASK

2: SUB CARRY, MASK

3: SUB MASK, 2*0(RESULT)

4: SUBC MASK, 2*1(RESULT)

5: SUBC MASK, 2*2(RESULT)

6: SUBC MASK, 2*3(RESULT)

7: SUBC MASK, 2*4(RESULT)

8: SUBC MASK, 2*5(RESULT)

9: SBC 2*6(RESULT)

10: SBC 2*7(RESULT)

11: SBC 2*8(RESULT)

12: SBC 2*9(RESULT)

13: SBC 2*10(RESULT)

14: SBC 2*11(RESULT)

15: SUBC CARRY, 2*12(RESULT)

16: SBC 2*13(RESULT)

17: SUBC MASK, 2*14(RESULT)

18: SUBC MASK, 2*15(RESULT)

parts can be implemented in interleaved or separated way. On one hand, the
advantage of separated version combines any multiplication and reduction meth-
ods without difficulties. On the other hand, the interleaved version optimizes the
number of memory access for intermediate results. In this paper, the interleaved
version is adopted since the hardware multiplier of MSP430X is very efficient
to handle the accumulation of intermediate results. In Figure 1, the comparison
of procedures for interleaved Montgomery multiplication in hardware utilization
are described.

Hardware 
Multiplier

Arithmetic 
Logic Unit

(1) MUL

(a) previous 

Memory

(2) RED
(3) RES

Hardware 
Multiplier

Arithmetic 
Logic Unit

(1) MUL

(b) proposed

Memory (2) RED
(3) RES

Fig. 1. Procedures for Montgomery multiplication in hardware utilization, MUL: mul-
tiplication, RED: reduction, RES: result

Note that previous methods only utilized the hardware multiplier for both
multiplication and reduction. This approach is efficient for original Montgomery
multiplication. However, the proposed method performs the multiplication in the
hardware multiplier and the reduction in the basic arithmetic logic unit. This
approach shows better performance than previous work when it comes to special
modulus.

Register and Memory Utilization Since the performance is highly relied on
the number of memory accesses, the optimized register utilization is very im-



Modular Multiplication on MSP430X 7

portant for high-speed implementations. MSP430X microprocessor equips only
12 general purpose registers, among which five, two, one, and three registers
are assigned for intermediate results, temporal storage, memory address of in-
termediate results in hardware multiplier, and memory address of operands as
well as results, respectively. Every operand of multiplication is directly assigned
to hardware multiplier and the 96-bit wise intermediate results are cached in
the five 16-bit registers, which is used for efficient reduction based on the basic
arithmetic. Montgomery multiplication needs to keep Q operands to perform the
reduction, which are dynamically loaded/stored from/to the STACK.

Modular Reduction Our modular multiplication combined both hardware-
aided multiplication and basic Arithmetic Logic Unit (ALU) based modular re-
duction. At first we follow the product–scanning multiplication (i.e. column-wise
multiplication) routines, which can be implemented with Multiplication–and–
ACcumulation mode of hardware multiplier. Afterward the intermediate results
are loaded to some 16-bit registers and then reduced. Different from previous
Montgomery reduction which utilizes the product–scanning based multiplica-
tion, in our reduction we exploited the properties of special modulus and thus
replaced the expensive multiplication into addition/subtraction operations.

For example, the modulus for NIST P-256 curve consists of three patterns
in hexadecimal way, which includes 0x00000000, 0x00000001, and 0xFFFFFFFF.
Since the 0x00000000 pattern does not require any computations, the routine is
optimized away. The 0x00000001 pattern only requires five 16-bit wise addition,
and the operands are directly loaded from memory and added to the memory.
The 0xFFFFFFFF pattern requires three 16-bit wise addition and five 16-bit wise
subtraction operations, where both operations requires identical 32-bit operands.
We firstly load the 32-bit operands to two 16-bit registers (temporal storages)
and used the operands twice for 32-bit addition and 32-bit subtraction, respec-
tively. When the 0xFFFFFFFF pattern appears before operand generation, five
16-bit wise subtraction operations are optimized away because the least signifi-
cant double-word is always set to zero.

The detailed descriptions of Montgomery multiplication in second column for
NIST P-256 on MSP430X are given in Algorithm 3. It can be viewed that from
Step 1 to 15, two partial products are obtained in the product-scanning way,
while from Step 16 to 34, Montgomery reduction with 0xFFFFFFFFFFFFFFFF is
performed in simple addition and subtraction.

Final Reduction The last step of Montgomery multiplication may require the
final subtraction to get reduced results. We adopted the masked subtraction
described in Algorithm 2.

Modular Squaring The squaring operation is also frequently called in the
cryptographic implementations. For the straight-forward squaring implementa-
tion, we can directly use the multiplication for squaring by setting both operands



8 Hwajeong Seo, Kyuhwang An, Hyeokdong Kwon, and Zhi Hu

Algorithm 3 Montgomery Multiplication in second column for NIST P-256 on
MSP430X

Input: operand pointers (APTR and
BPTR), memory address of carry bit
in hardware multiplier (SPTR), tempo-
ral registers (T0 and T1)

Output: stack pointer R1, intermediate
results (C0, C1, C2, C3, CARRY)

...
1: MOV @APTR+, &MPY32L

2: MOV @APTR+, &MPY32H

3: MOV @BPTR+, &OP2L

4: MOV @BPTR+, &OP2H

5: MOV @APTR+, &MAC32L

6: MOV @APTR+, &MAC32H

7: SUB #2*4, BPTR

8: MOV @BPTR+, &OP2L

9: MOV @BPTR+, &OP2H

10: ADD @RL+, C0

11: ADDC @RL+, C1

12: ADDC @RL+, C2

13: ADDC @RL+, C3

14: ADDC @SPTR, CARRY

15: SUB #2*4, RL

16: MOV @R1+, T0

17: MOV @R1+, T1

18: ADD T0, C2

19: ADDC T1, C3

20: ADC CARRY

21: SUB T0, C0

22: SUBC T1, C1

23: SBC C2

24: SBC C3

25: SBC CARRY

26: SUB #2*2, R1

27: MOV C0, 2*2(R1)

28: MOV C1, 2*3(R1)

29: ADD C2, C0

30: ADDC C3, C1

31: CLR C2

32: CLR C3

33: ADDC CARRY, C2

34: CLR CARRY

...

to identical values. However, the multiplication routine does not ensure the
highest performance for squaring operation since some memory accesses/partial
products can be optimized by loading/performing once rather than twice. The
detailed descriptions are given in Algorithm 4. Note that from Step 1 to 6, the
partial product is obtained. When the part of operand for partial product is
identical, we only need to assign it rather than full operands.

3.3 Implementation of NIST P–256 on MSP430X microprocessors

The first implementation of ECC on MSP430X belongs to Gouvêa et al. [5],
where they utilized the new 32-bit hardware multiplier instructions of MSP430X.
Particularly, the new 32-bit hardware multiplier enhances the previous 16-bit
hardware multiplier based prime field multiplication by about 45%. The combi-
nation of optimized algorithms and hardware shows that ECC at the security
level of 128-bit is feasible for the MSP430X. Seo et al. intensively studied on
multi-precision multiplication and squaring operations on MSP430 processors
[17, 16, 15], where they optimized the register usages by caching the operands
and memory access through incremental addressing mode.



Modular Multiplication on MSP430X 9

Algorithm 4 Partial products for squaring operations on MSP430X

Input: operand pointers (APTR and
BPTR), memory address of carry bit
in hardware multiplier (SPTR)

Output: intermediate results (CARRY)
...
1: MOV @APTR+, &MAC32L

2: MOV @APTR+, &MAC32H

3: SUB #2*4, BPTR

4: MOV @BPTR+, &OP2L

5: MOV @BPTR+, &OP2H

6: ADD @SPTR, CARRY

7: SUB #2*2, BPTR

8: MOV @BPTR+, &OP2L

9: MOV @BPTR+, &OP2H

10: ADD @SPTR, CARRY

...

In LatinCrypt’14, Hinterwälder et al. suggested Curve25519 for MSP430 mi-
crocontrollers [7], in which they avoided conditional jumps and loads to prevent
timing attacks. Moreover, they provided a comprehensive evaluation of different
implementations of the modular multiplication, based on which the Curve25519
implementations on MSP430X having 16-bit and 32-bit hardware multipliers
achieved 9.1M and 6.5M cycles, respectively. Düll et al. in [3] optimized the
X25519 key-exchange protocol for MSP430X 16-bit microcontrollers, and their
implementations for MSP430X takes 5,301,792 cycles (32-bit multiplier) and
7,933,296 cycles (16-bit multiplier) for the computation of Diffie–Hellman key
exchange. The computation is performed in less than a second if clocked at
16MHz for a security level of 128 bits. Recently, Seo in [14] presented size op-
timized implementation of Curve25519, where he utilized hardware multiplier
and accelerated the performance through the optimized multiplication routines
in product-scanning way.

In this work, we targeted the special modulo of NIST P–256, and imple-
mented desired cryptographic primitives. The NIST P–256 elliptic curve is given
by

E/Fp256 : y2 = x3 − 3 · x+ b, p256 = 2256 − 2224 + 2192 + 296 − 1,

and other details can be referred to the FIPS 186-2 standard [1]. For finite field
arithmetic, we mainly follow the proposed techniques described in Section 3
to do the modular addition/substraction and modular multiplication/squaring
operations. Moreover, we adopted the constant-time finite field inversion of NIST
P–256, which is performed by powering p256−2. Such inversion can be computed
at a cost of 255S + 11M by following Algorithm 2 in [19]. For elliptic curve group
arithmetic, we utilized the Montgomery ladder using co-Z Jacobian arithmetic
with X and Y coordinates only, which ensures the fast and regular Montgomery
ladder algorithm for scalar multiplication [13]. Since the regular Montgomery
ladder algorithm does not require conditional statements, the implementation is
always constant timing, and thus secure against the simple power analysis and
timing attacks.



10 Hwajeong Seo, Kyuhwang An, Hyeokdong Kwon, and Zhi Hu

4 Evaluation

We implemented the NIST P–256 by using the proposed method on 16-bit
MSP430X microprocessors (i.e. MSP430F5529) and evaluated the performance
of implementations in execution time (clock cycles).

In Table 2, the detailed descriptions of performance evaluation for finite
field operations are given. Note that addition and subtraction operations are
much cheaper than multiplication and squaring operations (i.e., 8.x faster). It is
also natural that the squaring operation is faster (by 4.6%) than multiplication
through dedicated squaring routine in this paper. What’s more, the inversion is
implemented based on Fermat’s little theorem, which is a regular fashion and
ensures constant timing.

Table 2. Performance evaluation (execution timing in clock cycles) of finite field ad-
dition, subtraction, multiplication, squaring and inversion operations for NIST P–256
on 16-bit MSP430X microprocessors.

ADD SUB MUL SQR INV

227 228 2,019 1,926 522,040

We also give the comparison results of NIST P–256 with previous work as
Table 3. For the most performance-critical operations, our proposed modular
multiplication and squaring operations improve the performance of those in [5]
by 39% and 37.1%, respectively. Such performance enhancements are achieved
through optimized memory access, register utilization, and efficient modular re-
duction techniques. Moreover, this performance improvement directly influences
the performance of scalar multiplication.

Table 3. Comparison of NIST P–256 implementations on 16-bit MSP430X micropro-
cessors

Method MUL SQR Scalar MUL Cache Attack Timing Attack

Gouvêa et al. [5] 3,315 3,064 5,321,776 – –

This work 2,019 1,926 9,122,988
√ √

Though previous implementation of scalar multiplication requires 5,321,776
clock cycles [5], which is faster than ours. This is mainly because their imple-
mentation utilized the NAF method for scalar multiplication, which requires
pre-computed Look-Up Table (LUT) to accelerate the performance. However,
the frequent LUT access increases cache hit rates and may cause cache attack.
It should be noted that in [5] the point addition and doubling chain is not a
regular fashion, which would be vulnerable to timing attack and leak the secret
information.



Modular Multiplication on MSP430X 11

In order to avoid the potential side channel attacks, we also implemented the
scalar multiplication on NIST P–256 in regular fashion as the Montgomery ladder
algorithm. Thus constant timing finite field arithmetic and regular elliptic curve
group arithmetic result in constant timing scalar multiplication implementation.
Even though we sacrifice the performance, the implementation is much secure
than previous works.

5 Conclusion

In this paper, we present new optimal modular multiplication techniques for spe-
cial modulus based on interleaved Montgomery multiplication on 16-bit MSP430X
microprocessors. The multiplication part of Montgomery multiplication is per-
formed in the hardware multiplier, while the reduction operation is performed in
the basic Arithmetic Logic Unit (ALU) with an optimal routine. Furthermore,
the final subtraction is efficiently handled through masked subtraction for the
target embedded processors.

The proposed implementation improves the previous modular multiplication
and squaring operations for NIST P–256 curve by 39% and 37.1% for 16-bit
MSP430X microprocessors, respectively. Based on the improved Montgomery
multiplication, the scalar multiplication of NIST P–256 is efficiently constructed.
The implementation utilized the Co-Z representation and security countermea-
sures against timing attack and simple power analysis. The proposed implemen-
tation of scalar multiplication achieves 9,122,988 clock cycles and requires only
0.575 seconds (@16MHz).

We hope that such techniques for modular multiplication with special mod-
ulus on MSP430X microprocessor would improve the performance (as well as
implementation security) of cryptographic primitives, which are thus applicable
for more cryptographic schemes (such as SM2/NIST ECC and SIDH) and more
platforms (such as 8-bit AVR).

6 Acknowledgement

This work was partly supported by the National Research Foundation of Ko-
rea(NRF) grant funded by the Korea government(MSIT) (No. NRF-2017R1C1B5075742)
and the MSIT(Ministry of Science and ICT), Korea, under the ITRC(Information
Technology Research Center) support program(2014-1-00743) supervised by the
IITP(Institute for Information & communications Technology Promotion). The
work of Zhi Hu is partially supported by the Natural Science Foundation of
China (Grant No. 61602526).

References

1. 186-2, F.: Digital signature standard (dss). Federal Information Processing Stan-
dards Publication 186-2, National Institute of Standards and Technology (2000)



12 Hwajeong Seo, Kyuhwang An, Hyeokdong Kwon, and Zhi Hu

2. Adalier, M.: Efficient and secure elliptic curve cryptography implementation of
Curve P-256. In: Workshop on Elliptic Curve Cryptography Standards (2015)

3. Düll, M., Haase, B., Hinterwälder, G., Hutter, M., Paar, C., Sánchez, A.H.,
Schwabe, P.: High-speed Curve25519 on 8-bit, 16-bit, and 32-bit microcontrollers.
Designs, Codes and Cryptography 77(2-3), 493–514 (2015)

4. Faz-Hernández, A., López, J., Ochoa-Jiménez, E., Rodŕıguez-Henŕıquez, F.: A
faster software implementation of the supersingular isogeny Diffie-Hellman key
exchange protocol. IEEE Transactions on Computers (2017)

5. Gouvêa, C.P., Oliveira, L.B., López, J.: Efficient software implementation of public-
key cryptography on sensor networks using the MSP430X microcontroller. Journal
of Cryptographic Engineering 2(1), 19–29 (2012)

6. Gueron, S., Krasnov, V.: Fast prime field elliptic-curve cryptography with 256-bit
primes. Journal of Cryptographic Engineering 5(2), 141–151 (2015)

7. Hinterwälder, G., Moradi, A., Hutter, M., Schwabe, P., Paar, C.: Full-size high-
security ECC implementation on MSP430 microcontrollers. In: International Con-
ference on Cryptology and Information Security in Latin America. pp. 31–47.
Springer (2014)

8. Jalali, A., Azarderakhsh, R., Kermani, M.M., Jao, D.: Supersingular isogeny Diffie-
Hellman key exchange on 64-bit ARM. IEEE Transactions on Dependable and
Secure Computing (2017)

9. Koziel, B., Jalali, A., Azarderakhsh, R., Jao, D., Mozaffari-Kermani, M.: NEON-
SIDH: efficient implementation of supersingular isogeny Diffie-Hellman key ex-
change protocol on ARM. In: International Conference on Cryptology and Network
Security. pp. 88–103. Springer (2016)

10. Liu, Z., Seo, H., Castiglione, A., Choo, K.K.R., Kim, H.: Memory-efficient imple-
mentation of elliptic curve cryptography for the Internet-of-Things. IEEE Trans-
actions on Dependable and Secure Computing (2018)

11. Liu, Z., Seo, H., Großschädl, J., Kim, H.: Efficient implementation of NIST-
compliant elliptic curve cryptography for 8-bit AVR-based sensor nodes. IEEE
Transactions on Information Forensics and Security 11(7), 1385–1397 (2016)

12. Peters, D., Raskovic, D., Thorsen, D.: An energy efficient parallel embedded system
for small satellite applications. ISAST Transactions on Computers and Intelligent
Systems 1(2) (2009)

13. Rivain, M.: Fast and regular algorithms for scalar multiplication over elliptic curves.
Iacr Cryptology Eprint Archive (2011) (2011)

14. Seo, H.: Compact software implementation of public-key cryptography on
MSP430X. ACM Transactions on Embedded Computing Systems (TECS) 17(3),
66 (2018)

15. Seo, H., Kim, H.: Multi-precision squaring on MSP and ARM processors. In: 2014
International Conference on Information and Communication Technology Conver-
gence (ICTC). pp. 356–361. IEEE (2014)

16. Seo, H., Lee, Y., Kim, H., Park, T., Kim, H.: Binary and prime field multipli-
cation for public key cryptography on embedded microprocessors. Security and
Communication Networks 7(4), 774–787 (2014)

17. Seo, H., Shim, K.A., Kim, H.: Performance enhancement of TinyECC based on
multiplication optimizations. Security and Communication Networks 6(2), 151–
160 (2013)

18. Walter, C.D., Thompson, S.: Distinguishing exponent digits by observing modu-
lar subtractions. In: Cryptographers’Track at the RSA Conference. pp. 192–207.
Springer (2001)



Modular Multiplication on MSP430X 13

19. Zhou, L., Su, C., Hu, Z., Lee, S., Seo, H.: Lightweight implementations of NIST
P-256 and SM2 ECC on 8-bit resource-constraint embedded device. ACM Trans-
actions on Embedded Computing Systems (TECS)


