4차 산업혁명 시대
스마트 제조혁신 및 인재육성 방안

스마트제조혁신추진단장 박 한국

2020. 1. 21.
스마트 제조혁신추진단 박한구 단장

Professional Experience

현 | 스마트제조혁신추진단 단장
현 | IEC TC 65C 기술전문위원

전 | 한국인더스트리 4.0 협회 회장 (Chairman)
전 | Smart Machine & Factory Group 대표 (CEO)
전 | POSCO ICT 스마트팩토리 사업실장 상무 역임
전 | POSCO 글로벌 판매생산기술지원반 상무 역임
전 | POSCO 포항제철소 제어기술개발그룹장 역임

학력 | 인하대학교 전자공학 학사
| 미국 Stevens 공대, 컴퓨터공학 석사
| 포스텍 미러기술 최고경영자과정 수료

저서 | 4차산업혁명 새로운 제조업의 시대 (공저, 2017.06)

• 제4차 산업혁명 스마트공장 (Smart Factory) 전문가
• 35년간 POSCO, POSCO ICT 자동화 스마트화 전문가
• 4차 산업혁명 대응
 미래_dept 및 실험방안 컨설팅, 조정 세미나 실적
 - 한국수전원자력 및 LS NIKKO 등 제반의 4차 산업혁명 대응 전략 및 실험방안 컨설팅(2018)
 - 국가 사무처 "4차 산업혁명에 대한 산업, 육성방안"(2018)
 - 농업기술자주 핵심공정 제어시스템 및 자율제어 스마트팩토리 및 연구 구축 컨설팅(2018)
 - 한국과학기술원(UHIN) "4차 산업혁명 시대의 새로운 디지털 컨트롤과 소프트웨어 기술의 상용화 방안 연구"(2017)
 - 산업통상자원부 "제10기 산업의 Smart Factory 구축을 위한 표준 도달 개발" 컨설팅 사업(2017)
 - "화공처리장에서 제4차 산업혁명 대응 미래적목적실험방안 컨설팅"(2017)
 - LG Display 스마트팩토리 컨설팅(2017)

• POSCO ICT 스마트팩토리 사업설계(2014~2016)
 - 4차 산업혁명 스마트공장 전진설계 및 구축
• POSCO 글로벌 판매생산기술지원반(2011~2013)
• POSCO 포항제철소 제어기술개발그룹장(1982~2013)
 - Senior Master PCP로써 제조소 MES, Process Computer, PLC, DCS, 계측 센서, Actuators 등 자동제어기술 개발
 - 공장 자동화시스템 신규 구축 및 기존 설비합리화사업 엔지니어링 및 사업 실적
목차

CONTENTS

1. 스마트제조혁신 정부지원 전략

01. 제4차 산업혁명의 Mega Trends

02. 스마트제조혁신 비전 및 전략

03. 스마트 공장 보급 확산 정부지원 사업

04. 인공지능의 시대 필요한 인재 육성
제4차 산업혁명의 Mega Trends
“사람의 품격, 가치를 어떻게 높여 줄 것인가?”

How will you enhance a person's dignity and value?
급속한 저출산, 고령화

01. 한국 고령화 속도: 세계 평균 3배
 · 고령인구 비율: '19년 14.9%(세계 평균), '67년 46.5%(세계 평균 18.6%)

02. 생산가능인구의 감소: 2018년을 기점으로 노동력 공급 감축
 · 생산인구 비율: '19년 72.7%(세계 평균), '67년 45.4%(세계 평균 65.3% > 61.7%)

03. 생산 연령층의 가족 부담 (100명 분양할 고령인구)
 · 노년부양비: '19년 20.4명, '68년 120.2명

04. 출생아수: 세계 최저 수준
 · '15~'20년 합계출산율 (여성 1명이 기약기간동안 출산:1.11명 (2017년) 2.47명)
2030년,
우리 공장을 지금처럼 가동할 수 있을까?

By 2030, can our factory be up and running like it is now?
1, 2, 3차 산업 혁명

First, Second and Third Industrial Revolution

Steam
First Steam Engine, James Watt, 1775

Electricity
M. Faraday Motor, 1821
Edison Bulb, 1879
Ford, 1913

Digital
Computer, 1946
ARPANET, 1969
3D Printing, 1980

글로벌 선도 기업

반도체: 삼성전자, 하이닉스
백색가전: LG전자, 삼성전자
자동차: 현대자동차
철강: 포스코
조선: 현대중공업

1966년
인천 제철공장

1968년
쌍용 시멘트 공장

1972년
울산 석유화학공장

1973년
포항종합제철
2016년 1월 다보스 포럼에서 4차 산업혁명은 시작되었다!

변화하지 않으면 살아남기 어렵다!

피할 수 없는 예측할 수 없는 변화!

4차 산업혁명은 제조업 혁신을 넘어
우리 삶 전체를 근본적으로 바꾸는 엄청난 변화

Source : Hung Song, 한국산업디자이너 4.0 협회 인터뷰원
세계는 제조혁신 경쟁 중

The world is competing for manufacturing innovation.
글로벌 제조 경쟁력 지수 (CIP)

<table>
<thead>
<tr>
<th>Ranking</th>
<th>2010</th>
<th>2013</th>
<th>2016</th>
<th>2020</th>
<th>2030</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>🇨🇳</td>
<td>🇨🇳</td>
<td>🇨🇳</td>
<td>🇺🇸</td>
<td>🇺🇸</td>
</tr>
<tr>
<td>02</td>
<td>🇮🇳</td>
<td>🇩🇪</td>
<td>🇺🇸</td>
<td>🇺🇸</td>
<td>🇰🇷</td>
</tr>
<tr>
<td>03</td>
<td>🇰🇷</td>
<td>🇺🇸</td>
<td>🇩🇪</td>
<td>🇩🇪</td>
<td>🇰🇷</td>
</tr>
<tr>
<td>04</td>
<td>🇺🇸</td>
<td>🇮🇳</td>
<td>🇯🇵</td>
<td>❌</td>
<td>❌</td>
</tr>
<tr>
<td>05</td>
<td>🇧🇷</td>
<td>🇰🇷</td>
<td>🇰🇷</td>
<td>🇯🇵</td>
<td>🇰🇷</td>
</tr>
<tr>
<td>06</td>
<td>🇯🇵</td>
<td>🇸🇬</td>
<td>🇮🇳</td>
<td>🇬🇧</td>
<td>❌</td>
</tr>
<tr>
<td>07</td>
<td>🇬🇧</td>
<td>🇬🇧</td>
<td>🇬🇧</td>
<td>🇬🇧</td>
<td>❌</td>
</tr>
<tr>
<td>08</td>
<td>🇩🇪</td>
<td>🇧🇷</td>
<td>🇬🇧</td>
<td>🇬🇧</td>
<td>❌</td>
</tr>
<tr>
<td>09</td>
<td>🇸🇬</td>
<td>🇯🇵</td>
<td>🇮🇨</td>
<td>🇸🇬</td>
<td>❌</td>
</tr>
<tr>
<td>10</td>
<td>🇷🇺</td>
<td>🇯🇵</td>
<td>🇵hiên</td>
<td>🇨🇦</td>
<td>❌</td>
</tr>
</tbody>
</table>

※ Source : Deloitte Development LLC
스마트제조혁신 비전 및 전략
2. 스마트제조혁신 비전 및 전략

“제조 강국 4위를 달성하기 위해 대기업, 중견, 중소 기업과 Connected Enterprise를 기반으로”

1단계 (2014~)
· 제조기업의 글로벌 제조 경쟁력 확보를 위한 스마트 공장 보급 및 확산 사업

2단계 (2020~)
· 제조기업에서 발생되는 모든 데이터를 수집 저장하여 분석 활용할 수 있는 데이터 센터 기반의 클라우드 빅 데이터 DNA 플랫폼 구축

3단계 (2022~)
· 3차 산업혁명의 Fast Follower에서 4차 산업혁명의 First Mover로 도전하여 신기술, 신제품을 개발하기 위한 고성능 컴퓨터 기반의 AI 플랫폼 구축
비전 및 목표

“AI, 슈퍼컴 기반의 중소기업
스마트제조혁신 선순환 체계 구축으로 삶의 질 향상”

스마트공장
3. 만개 보급

스마트공장
고도화 수준
(Level 3이상)

25% 달성

제조 빅데이터
플랫폼
추진전략 (1)

제조혁신 신 사업 모델 및 가치 창출

상생 기반의 스마트화 고도화 수준 25% 달성

전략기획 강화

표준 정립을 통한 연계성 강화

스마트제조기술 고도화

대기업~중소기업 상생 협력 생태계 구축

대기업 ~ 중소기업간 데이터 공유로 가치 창출

대표기업의 업종별 경험기술, 운영 노하우 활용

업종별 연계 융합으로 신사업 모델 및 가치 창출

Product Lifecycle
전 과정에서 AI 기반 플랫폼
추진전략 (2)

"민간주도의 중소기업 체질 및 역량 강화"

- 스마트화 보급확산 지원체계 혁신으로 3만개 달성
- 사람 중심의 일터 문화 조성 및 일자리 창출

1. 스마트 공장 수준별 보급 활성화
2. 민관·관·지역 협력 지원체계 강화
3. 스마트공장 종합지원시스템 운영

중소기업 맞춤형 표준모델 확산

IoT, Sensor Cloud, Edge Big Data, AI Mobile 3D printing
CPS, AR/VR Robot, Drone Security Blockchain Platform

공급기업

스마트 공장 공급 협업체

수요기업

스마트 공장 구축

업체별, 지역별 중소 공급기업의 협업체로 표준 모델을 완성 후 유사기업에 신속확산

업무 협약
추진전략 (3)

“성과 제고 및 확산으로 기업경쟁력 강화”

제조 빅데이터 센터 구축으로 생산성 및 원가 절감

01 성과분석 및 사후지원체계 구축
02 성과확산 및 대국민 인식 제고
03 스마트제조기술 빅데이터 수집 – 분석 – 활용 - 지원

AI, 슈퍼컴 연계한 빅데이터 플랫폼 구축
추진전략 (4)

국제교류 및 동남아시아 시장진출

국제표준을 기반으로 한국형 표준 모델개발
해외동반진출 할 수 있는 글로벌 협업체구성

대표기업 선정
스마트 공장 로드맵 및 보급확산

성과 창출 확인
수요와 공급기업의 경제적 효과 확인

국내 확산 사업
유사 기업에 스마트 공장 신속 확산

Industry 4.0 국제협력

- 국제표준체계 (RAMI4.0 SMRM)
- 독일 PI4.0, LNI4.0
- 선도 경험기술 (생태계)
- 미국 IIC, 일본 RRI
- 수요/공급 중소기업의 동남아시아시장 진출
- 태국 베트남 인도네시아 등 Industry 4.0 동반성장 협업
스마트 공장 보급 확산 정부지원 사업
3. 스마트 공장 신규 구축 및 고도화 사업

- 생산 허무의 3D(Dangerous, Dirty, Difficulty) 작업과 단순 반복적인 작업을 자동화 및 디지털화하여 젊은 세대들이 중소기업에 취업하여 지식근로 자료 근무할 수 있는 작업환경 개선을 시작으로 인공지능 기반의 자율 생산 체계로 인간의 삶의 질 향상

Level 0: Manual Operation, Simple Repeat Job in 3D Work Environment

Level 1: Ready
- OP: Partial Standard, Semi Auto
- human beings have full responsibility, make all decisions.

Level 2: Automated
- OP: Factory & Office Automation
- Automatic Material Handling & Tracking, Data Acquisition

Level 3: Experienced
- OP: Expert Decision-making
- Platform based Big Data Analyzed, Foster Data Scientist

Level 4: AI Brain
- OP: AI based Decision-making
- AI based Connected Factory

Level 5: Autonomous
- OP: Autonomous Manufacturing
- CPS based connected Enterprise.

2018	**2022**
Startup SME | 109 | 583 | 1% | 2% |
Traditional SME | 6,288 | 22,400 | 80% | 75% |
6,288 | **22,400** | **80%** | **75%**
3.1 제조기업에서 스마트 공장을 왜 구축해야 하는가?

생산현장, 사무실 단순 근로자를 지식 근로자로 일하는 방식을 전환

그동안 3D 작업에 의존한 근로자가 투입하였으나 주 52시간으로 집업수당이 줄자 집업수당을 많이 주는 회사로 이직현상이 발생하고, 한국 젊은이들을 재무하려면 단순 반복적 일의한 작업환경을 없애지 않으면 일할 사람이 없는 것이 현실

01 / 지식근로자의 경험적 기술의 상품화 및 아이디어 발굴로
02 / 새로운 제품을 더 저렴하게 생산하여 글로벌 시장에 수출
03 / 글로벌 강소기업 (히든 챔피언) 으로 성장
04 / 판매 이익을 극대화하는 경제적 가치 창출로

인간 삶의 질•품격을 높여 풍요롭게 다 함께 잘 살도록 만들어 가는 것
3.2 스마트 공장의 미래 달성 모습은?

미래공장은

- 고객으로부터 주문을 받아 적기에 원자재를 구매 임고
- 공장내 원료, 자재, 설비, 중간재 제품, 에너지, 환경 등 공장내 모든 사물들이 자기 성능과 상태를 서로 소통
- 이상 발생시 사망에 소통하여 신속 대응
- 고객이 원하는 제품을 스스로 생산하고, 고객에게 제품을 자율 배송
- 고객은 사용 중에 불편사항을 공장에 실시간으로 Feedback
- 예측된 비 기반의 노후 부품 교체 및 폐기등의 모든 것을 자율 관리

사람은 인공지능(AI) 두뇌가 24시간 모니터링, 분석 및 판단한 결과를 기반으로 최종 의사결정을 하고 신속한 조치를 취하는 역할을 한다.

수요기업이 제조공장에 데이터 기반의 인공지능 두뇌를 개발하여 글로벌 시장에 솔루션을 판매하는 공급기업으로 변신
3.3 스마트 공장 보급확산 및 고도화 사업 범위는?

- 기업내 모든 자산 4M2E (Man, Machine, Material, Method, Energy, Environment/Safety)을 디지털화하여, 모든 사물 간 연결하고, 빅 데이터 베이스를 구축 빅데이터 분석 및 인공지능 솔루션을 적용하여 설비 고장, 제품 불량 등을 사전에 예측하여 선행 제어하는 스마트화

Factory Automation, Digitalization

- 최적화
 - Level 4: 전사 최적화
 - Level 3: 생산 최적화
 - Level 2: 공정 자동화
 - Level 1: 자동화 수작업

- 자동화
 - PoP 공정제어 컴퓨터

- 표준화
 - 전사 최적 자원 관리 ERP, PLM, SCM 등
 - 중합생산관리 MES, MoM

Smart Manufacturing

- 스마트화
 - 유연 생산
 - 자율 생산
 - 고장 예측
 - 품질 예측

- 연결화
 - Big Data 분석, Simulation Tool AI Algorithm

- 디지털화
 - 설비, 도면, 문서, 자재, 공정 등 4M 2E 디지털화

3차 산업혁명의 과업

4차 산업혁명의 과업
3D, 단순 반복적인 작업 자동화 및 스마트화

Current Status

✓ 3D 작업, 단순 단복

- A 암알 생산 공장
 - 컨베이어벨트에서 암알 포장 작업
 - 직원 15명, 외국인 직원 4명(220~250만원)
- 외국인 근로자 압력
 - 열악한 환경 단순 반복 작업
 - 한국 근로자 압력 기피
- 외국인 근로자 58만명(중소기업중앙회 '19.5)
- '18년 평균 219만원, 사업 대 290만원

Automation/Digital화

✓ Factory/Office Automation

1단계: 수작업
2단계: 기계화
3단계: 단위 기계의 일부 자동화
4단계: 단위 기계의 완전 자동화
5단계: 생산라인의 자동화
6단계: 공장, 전사 자동화, 최적화

Smart화

✓ Smart Manufacturing

1단계: Data 분류, 분석, 활용 체계
2단계: Data 수집 및 저장 인프라
3단계: 분석 및 활용 플랫폼 구축
4단계: 분석 및 활용
5단계: 새로운 가치 창출
3.4 스마트 공장으로 일자리 창출 전략 – 수요·공급기업

수요기업

- 작업환경 개선으로 젊은 청년들이 자식근로자로 스마트화된 중소기업 취업 증가
- 1~3레벨의 스마트 공장 구축을 위한 자동화, 정보화 인력 증가
- 4~5레벨의 디지털화, 스마트화 관련 새로운 스마트 업 및 벤처 창업 증가

공급기업

생산현장의 단순 반복작업 행정업무
- 설비의 노후화
- 정형화도지 않은 공정
- 수작업 중심의 생산

생산자동화/정보화
- Sensor
- PLC
- Robot
- Plant
- PoP
- MES
- ERP

디지털화, 연결화
- Statistical Analysis
- Computer AID Engineering
- Simulation Modeling

스마트화
- IoT, 3D Printer
- 3D CAD, AR/VR
- Robot Cobot, Drone
- Network, OPC UA, 5G
- Data Acquisition, Cloud/Edge Computing
- Big Data Center, Big Data Analysis
- AI (ML, DL)
- CPS, Digital Twin
- Blockchain

일자리증가

자동차화 | 유지보수

자동화 | 유지보수

정보화

분석

디지털화

 연결화

스마트화

일자리창출
3.5 국제 표준 기반의 스마트 공장 표준 모델 개발

- 미국 IIC의 IIRM, 독일 PI4.0의 RAMI4.0의 모델을 기반으로 한국 중소기업형 표준모델을 업종별로 만들어 추진

IIC(미국)와 Industrie 4.0(독일)은 아키텍처를 매핑하고 궁극적으로 상호 운용 모듈을 제공하기 위해 이미 공동협력 연구를 진행 중

이 두 조직의 학습 및 연구는 각 아키텍처를 더욱 풍부하게 하고 표준 요구사항 개선 및 상호 운용성을 강화하기 위해 보다 긴밀하게 협력 할 수 있는 기반을 구축

"국제 표준 기반의 업종별 표준 모델 개발"
수작업, 미 연결된 시스템을 디지털화, 연결화를 통해 스마트한 공장을 구축 시 제조기업에 필요한 컴퓨터 및 데이터베이스, 소프트웨어를 클라우드 데이터베이스 및 컴퓨팅으로 공급하여 중소기업에서는 전산실, 컴퓨터를 보유하지 않고 저렴하게 활용하는 수 있도록 함으로서 경제적 가치 실현

Cloud Computing System
- ERP/PLM/SCM
- MES MOM
- Big Database
- AI Model
- 분석 판단

HPC System
- AI, CAE CPS Simulation
- 분석 판단

Market Store
- Gateway PC
- Edge Computer
- Edge Computer
- Edge Computer

01 수작업의 자동화, 로봇화 디지털화
02 기업내 MES, ERP 정보화 및 연결화
03 제조기업간의 데이터 연결화
04 빅 데이터 수집 및 저장
- Use Case, Template
05 인공지능 알고리즘 활용 예측화
- 실제해석 CAE Engineering Simulation
06 슈퍼컴퓨터 기반의 인공지능 및 CPS 활용 신제품 및 신사업개발
3.7 빅데이터 플랫폼 운영 방안

- 중소기업에서 전산설, 컴퓨터, 전문인력을 보유하지 않고 빅 데이터 플랫폼에서 원하는 솔루션을 경제적으로 활용하고, 솔루션을 가진 기업은 플랫폼의 Market Place에 탑재하여 수요 기업이 자율적으로 선택하여 활용할 수 있도록 한다.

- 플랫폼에 필요한 솔루션은 정부가 사용자 라이선스 별로 구매하여 구축하고, 수요 기업은 솔루션을 사용한 약 만큼의 경제적인 비용으로 활용토록 한다.
3.8 스마트 제조혁신 인력양성 지원 사업

스마트 제조혁신 인력양성 지원 사업 현황

주요내용

<table>
<thead>
<tr>
<th>사업명</th>
<th>추진내용</th>
<th>주무부처</th>
<th>유관기관</th>
</tr>
</thead>
<tbody>
<tr>
<td>스마트공장 운영설계 전문인력 양성사업</td>
<td>· 스마트공장의 고도화를 추진할 수 있는 체계적인 프로젝트형 실습교육과정
· 각 산업단지별, 업종별 특성을 반영한 맞춤형 스마트공장 교육과정
· 스마트공장 추진을 위한 체계적인 역량 강화
참여대학(한국산업기술대학교, 경희대학교, 중북대학교, 동아대학교, 성균관대학교)</td>
<td>산업통상자원부</td>
<td>한국생산성본부
전자부품연구원
한국산업단지공단
스마트제조혁신추진단</td>
</tr>
<tr>
<td>혁신성장 인력양성 사업</td>
<td>· 재직자 역량교육 및 창업지원으로 중소기업 혁신성장
전문인력 양성 교육</td>
<td>중소벤처기업부</td>
<td>중소벤처기업진흥공단
(중소벤처기업연수원)</td>
</tr>
<tr>
<td>스마트공장 배포터 운영사업 (예정)</td>
<td>· 실습 전용 교육장인 '스마트공장 배포터' 를 지역별로 구축해 중소기업 현장인력의 스마트화를 위한 직무전환 교육을 2022년까지 6만명을 대상으로 실시할 계획</td>
<td>중소벤처기업부</td>
<td>중소벤처기업진흥공단</td>
</tr>
<tr>
<td>스마트공장 특화캠퍼스 운영사업 (예정)</td>
<td>· 스마트공장 특화캠퍼스(인턴 및 창원)를 통해 러닝패트리 구축 및 학과 개편으로 기초 및 중간 단계 수준의 전문인력을 2022년까지 4400명 양성할 계획</td>
<td>고용노동부</td>
<td>한국폴리텍대학</td>
</tr>
</tbody>
</table>
인공지능의 시대 필요한 인재는?
4.1 스마트 제조혁신의 인재 육성 - 전략방향

- 제조기업의 표준화, 자동화, 최적화를 통한 3차 산업혁명의 과업을 완수해 가면서, 4차 산업혁명의 새로운 제조업의 시대를 대응하기 위한 인공지능 기반의 자율 생산 체계를 만드는 인재 육성

<table>
<thead>
<tr>
<th>3차 산업혁명</th>
</tr>
</thead>
<tbody>
<tr>
<td>✓ 공장 및 사무실 구석 구석 보이도록 들어 내기</td>
</tr>
<tr>
<td>· 조직간 신뢰와 소통을 기반으로 한가지 있는 정보의 공유</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>표준화 자동화 최적화</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>4차 산업혁명</th>
</tr>
</thead>
<tbody>
<tr>
<td>✓ Knowledge Base의 자연스런 개선과 기술의 축적</td>
</tr>
<tr>
<td>· 개인 기술/암묵지 ◦ Big Data 분석/검증/개선 ◦ 신차식/형식지화</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4차 산업혁명</th>
</tr>
</thead>
<tbody>
<tr>
<td>✓ Digital Twin 공장을 활용한 가상과 현실의 연결</td>
</tr>
<tr>
<td>· CPS 기반의 실제 생산환경과 동일한 환경의 3D 기반 Digital Twin Factory</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4차 산업혁명</th>
</tr>
</thead>
<tbody>
<tr>
<td>✓ 스스로 분석하고 판단하는 생각하는 공장/사무실</td>
</tr>
<tr>
<td>· 상황을 알리는 기계 : IOT로 유용한 정보를 제공하는 기계</td>
</tr>
<tr>
<td>· 공급사 ↔ 생산공장 ↔ 고객 ↔ 제 3자외부 정보 실시간 응용활용</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
기존 공장에 4차 산업혁명의 핵심기술을 적응하여 생각하는 공장 즉각, 공장을 만들어 글로벌 시장의 리더가 되는 것

글로벌 시대 리더
Global Market Leader

Market Intelligence
Smart R&D
Smart Factory
Smart Quality
Smart Product
Smart Logistics
Smart Service
4.3 인공지능 두뇌와 사람의 역할

- 사람을 대신하여 인공지능 두뇌가 24시간 시장 동향과 생산현장을 모든 장비를 모니터링하여 분석 판단하고, 시각화한 그 판단 결과를 사람이 보고, 최종적인 의사결정을 하고 신속하게 조치하는 모습으로 사람의 역할이 변화
4.4 한국에서 세계 무대로 나가는 인재

- 시간과 공간을 넘어 내가 가지고 있는 전문 지식을 다른 사람의 전문 지식과 융합하여 새로운를 창조해 나가는 시대에 우리는 어떻게 살아갈 것인가를 고민해야 할 시간입니다.

Thinking in New Box
할아버지의 말씀을 듣고 제발 꿈을 꾸고 싶어하는 네가 원하는 꿈을 훼손시킬가요.

네가 원하는 꿈을 훼손시킬가요.

내가 원하는 꿈을 훼손시킬가요.

내가 원하는 꿈을 훼손시킬가요.

내가 원하는 꿈을 훼손시킬가요.
글로벌 인재가 만드는 스마트공장은 스마트 경제로 가는 첫걸음입니다.