Construction of a WENO scheme based on the exponential approximation space enhancing the third-order WENO scheme

Kyungrok Lee1 Jung-II Choi1 and Jungho Yoon2

1) School of Mathematics and Computing (Computational Science and Engineering), Yonsei University, Seoul 03722, KOREA
2) Department of Mathematics, Ewha Womans University, Seoul 03760, KOREA

Corresponding Author : Kyungrok Lee, kyungrok422@yonsei.ac.kr

ABSTRACT

The goal of this study is to develop a novel weighted essentially nonoscillatory (WENO) finite difference scheme that improves the ability of the various third-order WENO methods. The approximation space is spanned by exponential polynomials and the shape parameter in the exponential polynomials can be regulated to adjust the local data feature, showing in better results compared to the algebraic polynomial-based schemes. We suggest an explicit form of the shape parameter and one can see that is enables the proposed scheme achieves the improved approximation order (that is, fourth-order accuracy) in smooth regions without loss of accuracy at critical points. Through several well-known benchmark numerical experiments, the our new WENO scheme captures complex shapes better near discontinuities than other third-order WENO schemes.

REFERENCES