EXPLICITE HYBRID NUMERICAL ALGORITHM FOR THE EFFICIENT 3D VOLUME RECONSTRUCTION USING A PHASE-FIELD METHOD

Darae Jeong 1, Yibao Li 2, Heon ju Lee 3, Sang Min Lee 3, Junxiang Yang 1, Seungwoo Park 1, Hyundong Kim 1, Yongho Choi 1, Junseok Kim 1,

1) Department of Mathematics, Korea University, Seoul 151-742, Republic of KOREA
2) School of Mathematics and Statistics, Xi’an Jiaotong University, Xi’an 710049, China
3) ROKIT Inc., Seoul 08512, Republic of KOREA

Corresponding Author: Junseok Kim, cfdkim@korea.ac.kr

ABSTRACT

We propose an explicit hybrid numerical method for the efficient 3D volume reconstruction from unorganized point clouds using a phase-field method. First, we define a narrow band domain embedding the unorganized point cloud and an edge indicating function. Second, we define a good initial phase-field function which speeds up the computation significantly. Third, we use a recently developed explicit hybrid numerical method for solving the three-dimensional image segmentation model to obtain efficient volume reconstruction from point cloud data. In order to demonstrate the practical applicability of the proposed method, we perform various numerical experiments.

REFERENCES

1. F. Remondino, “From point cloud to surface: the modeling and visualization problem,” International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
4. A. Stuart and A. R. Humphries, Dynamical System and Numerical Analysis, vol. 2, Cambridge University Press, New York, NY, USA,