Application of Convex Splitting Runge–Kutta method to the phase-field crystal equation

Jaemin Shin¹, Hyun Geun Lee² and June-Yub Lee³

1) Institute of Mathematical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
2) Department of Mathematics, Kwangwoon University, Seoul 01897, Republic of Korea
3) Department of Mathematics, Ewha Womans University, Seoul 03760, Republic of Korea

ABSTRACT

We propose the high order energy stable numerical method to solve the phase-field crystal equation. The Convex Splitting Runge–Kutta method is a simple unified framework to solve the gradient flow considering the energy stability. Since the phase-field crystal equation is an example for the gradient flow and the convex splitting strategy can be applicable, the combination of two idea is reasonable. We present numerical experiments to show the numerical accuracy and stability of the proposed methods.

REFERENCES