ADAMP: SLOWING DOWN THE SLOWDOWN FOR MOMENTUM OPTIMIZERS ON SCALE-IN Variant WEIGHTS

Byeongho Heo,¹ Sanghyuk Chun,¹ Seong Joon Oh,¹ Dongyoon Han,¹ Sangdoo Yun,¹ Gyuwan Kim,¹ Youngjung Uh,² and Jung-Woo Ha¹

1) Naver AI Lab
2) Applied Information Engineering, Yonsei University (Works done at Naver AI Lab)

Byeongho Heo and Sanghyuk Chun contribute equally.

ABSTRACT
Normalization techniques, such as batch normalization (BN) [2], have become standard tools for training deep neural network models. Originally proposed to reduce the internal covariate shift [2], normalization methods have proven to encourage several desirable properties in deep neural networks, such as better generalization and the scale invariance [3]. Prior studies have observed that the normalization-induced scale invariance of weights stabilizes the convergence
for the neural network training [3,4]. We provide a sketch of the argument here. Given weights \(w \) and an input \(x \), we observe that the normalization makes the weights become scale-invariant:

\[
\text{Norm}(w^\top x) = \text{Norm}(cw^\top x) \quad \forall c > 0.
\] (1)

The resulting equivalence relation among the weights lets us consider the weights only in terms of their \(\ell_2 \)-normalized vectors \(\hat{w} := \frac{w}{\|w\|_2} \) on the sphere \(S^{d-1} = \{ v \in \mathbb{R}^d : \|v\|_2 = 1 \} \). We refer to \(S^{d-1} \) as the effective space, as opposed to the nominal space \(\mathbb{R}^d \) where the actual optimization algorithms operate. The mismatch between these spaces results in the discrepancy between the gradient descent steps on \(\mathbb{R}^d \) and their effective steps on \(S^{d-1} \). Specifically, for the gradient descent updates, the effective step sizes \(\|\Delta \hat{w}_{t+1}\|_2 := \|\hat{w}_{t+1} - \hat{w}_t\|_2 \) are the scaled versions of the nominal step sizes \(\|\Delta w_{t+1}\|_2 := \|w_{t+1} - w_t\|_2 \) by the factor \(\frac{1}{\|w_t\|_2} \) [3]. Since \(\|w_t\|_2 \) increases during training [4], the effective step sizes \(\|\Delta \hat{w}_t\|_2 \) decrease as the optimization progresses. The automatic decrease in step sizes stabilizes the convergence of gradient descent algorithms applied on models with normalization layers: even if the nominal learning rate is set to a constant, the theoretically optimal convergence rate is guaranteed [4].

In this work, we show that the widely used momentum-based gradient descent optimizers decreases the effective step size \(\Delta \hat{w}_t \) even more rapidly than the momentum-less counterparts considered in [4]. This leads to a slower convergence for \(\hat{w}_t \) and potentially sub-optimal model performances. This phenomenon is not confined to the toy setup, for example, 95.5% and 91.8% of the parameters of the widely-used ResNet18 and ResNet50 [5] are scale-invariant due to BN.

We propose a simple solution to slow down the decay of effective step sizes while maintaining the step directions of the original optimizer in the effective space. At each iteration of a momentum-based gradient descent optimizer, we propose to project out the radial component (i.e. component parallel to \(w \)) from the update, thereby reducing the increase in the weight norm over time. Because of the scale invariance, the procedure does not alter the update direction in the effective space; it only changes the effective step sizes. We apply this technique on SGD and Adam [6] (SGDP and AdamP, respectively) and verify the resulting performance boosts over a diverse set of practical machine learning tasks.

REFERENCES

