Optimal Market-Making Strategies Under Synchronised Order Arrivals with Deep Neural Networks

So Eun CHOI¹, Hyun Jin JANG², Kyungsub LEE³, and Harry ZHENG⁴

1) Samsung Electronics, Suwon, KOREA
2) Department of Business Administration, UNIST, Ulsan, KOREA
3) Department of Statistics, Yeungnam University, Gyeongsan, KOREA
4) Department of Mathematics, Imperial College, London, UNITED KINGDOM

Corresponding Author: Hyun Jin JANG, janghj@unist.ac.kr

ABSTRACT

This study investigates the optimal execution strategy of market-making for market and limit order arrival dynamics under a novel framework that includes a synchronised factor between buy and sell order arrivals. Using statistical tests, we empirically confirm that a synchrony propensity appears in the market, where a buy order arrival tends to follow the sell order's long-term mean level and vice versa. This is presumably closely related to the drastic increase in the influence of high-frequency trading activities in markets. To solve the high-dimensional Hamilton–Jacobi–Bellman equation, we propose a deep neural network approximation and theoretically verify the existence of a network structure that guarantees a sufficiently small loss function. Finally, we implement the terminal profit and loss profile of market-making using the estimated optimal strategy and compare its performance distribution with that of other feasible strategies. We find that our estimation of the optimal market-making placement allows significantly stable and steady profit accumulation over time through the implementation of strict inventory management.