A simple topological pattern appearing in 2d Navier-Stokes flows at large Reynolds numbers

Sun-Chul Kim\(^1\) and Hisashi Okamoto\(^2\)

1) Department of Mathematics, Chung-Ang University, Seoul 156-756, KOREA
2) Research Institute for Mathematical Sciences, Kyoto University, Kyoto 606-8502, JAPAN

Corresponding Author: Sun-Chul Kim, kims@cau.ac.kr

ABSTRACT

We consider Kolmogorov's problem for the 2D Navier-Stokes equations. More precisely we study numerically stability and bifurcation of stationary and time-periodic solutions. For large Reynolds numbers, we observed a topologically simple pattern in streamlines, which is called unimodality. A new version of conjecture about such unimodal solutions is presented. We will present evidence that such patterns appear at large Reynolds numbers in steady-states or even in time-periodic solutions.