Shell Scripts

2021 Winter Wheel Seminar

2021/01/07

https://github.com/pacokwon/shell-script-samples

Shell Scriptgt?

0S: macO0S 11.1 20C69 x86-_64

Host: MacBookPro15,1

Kernel: 20.2.0

Uptime: 7 days, 17 hours, 4 mins

Packages: 105 (brew)

Shell: zsh 5.8

Resolution: 1680x1050@2x, 2560x144072x

DE: Aqua

WM: yabai

Terminal: kitty

Terminal Font: Ligalosevka Nerd Font Mono Medium 15.0
CPU: Intel i7-8750H (12) @ 2.20GHz

GPU: Intel UHD Graphics 63@, Radeon Pro 555X
Memory: [=

Battery: [

. KMMMMMMMMMMMMMMMMMMMMMMMWd .
XMMMMMMMMMMMMMMMMMMMMMMMX

), -L 1 ~/.config/nvim
[Users/pacokwon/.config/nvim

LICENSE

README .md

after

init.vim

lua

plugged

spell

4 directories, 3 files

A

Command-line Shell

) Shell (computing) - Wikipedia X =
&« > C 0 © & https://enwikipedia.org/wiki/Shell_(computing) B R4 v = 00
N - NOTIoogea M T2 Connouno eRE aceo oS
T S
Q0 Article Talk Read Edit View history | Search Wikipedia Q ;
N
%
e
WIKIPEDIA Shell (computing) .
i From Wikipedia, the free encyclopedia
Main page In computing, a shell is a computer program which exposes an operating system's services to a human user or 3
Contents other program. In general, operating system shells use either a command-line interface (CLI) or graphical user

Current events
Random article
About Wikipedia
Contact us
Donate

Contribute
Help

Learn to edit
Community portal
Recent changes
Upload file

Tools
What links here
Related changes
Special pages
Permanent link
Page information
Cite this page
Wikidata item

Print/export

Download as PDF
Printable version

In other projects

Wikimedia Commons
Wikibooks

Languages o]
ol

Espatiol

Frangais

#=0]

Bahasa Indonesia
Bahasa Melayu
Portugués

Pycekuit

HX
¥p 28 more

Edit links

https://en.wikipedia.org/wiki/File:X-Window-System.png

interface (GUI), depending on a computer's role and particular operation. It is named a shell because it is the
outermost layer around the operating system. ' 2]

Command-line shells require the user to be familiar with commands and their calling syntax, and to understand
concepts about the shell-specific scripting language (for example, bash).

Graphical shells place a low burden on beginning computer users, and are characterized as being easy to use. B -
Since they also come with certain disadvantages, most GUI-enabled operating systems also provide CLI shells. - |

Contents [hide] 3

1 Overview

2{Commeandline shells A graphical interface from the late 1980s, which &

features a TUI window for a man page, a shaped
window (oclock) as well as several iconified windows
In the lower right we can see a terminal emulator
running a Unix shell, in which the user can type

3 Graphical shells
3.1 Unix-like systems
3.2 Microsoft Windows

L}
4 Other uses commands as if they were sitting at a terminal.
5 See also
6 References
Overview | edit) l

Operating systems provide various services to their users, including file management, process management (running and terminating applications), batch processing,
and operating system monitoring and configuration.

Most operating system shells are not direct interfaces to the underlying kernel, even if a shell communicates with the user via peripheral devices attached to the
computer directly. Shells are actually special applications that use the kernel API in just the same way as it is used by other A shell the
user-system interaction by users for input, interpreting their input, and then handling an output from the underlying operating system (much like a read-eval—
print loop, REPL).[3! Since the operating system shell is actually an application, it may easily be replaced with another similar application, for most operating systems.

"\ Class Notes

simple list .+

In addition to shells running on local systems, there are different ways to make remote systems available to local users; such approaches are usually referred to as
remote access or remote administration. Initially available on multi-user mainframes, which provided text-based Uls for each active user simultaneously by means of a
text terminal connected to the mainframe via serial line or modem, remote access has extended to Unix-like systems and Microsoft Windows. On Unix-like systems, Reviewed Name
Secure Shell protocol is usually used for text-based shells, while SSH tunneling can be used for X Window Syst based graphical user (GUIs). On
Microsoft Windows, Remote Desktop Protocol can be used to provide GUI remote access, and since Windows Vista, PowerShell Remote can be used for text-based
remote access via WMI, RPC, and WS-Management.[]

B See All v Properties

& The Apportionment Problem

4 American Post-War Economics
Most operating system shells fall into one of two categories — command-line and graphical. Command line shells provide a command-line interface (CLI) to the
operating system, while graphical shells provide a graphical user interface (GUI). Other possibilities, although not so common, include voice user interface and various
implementations of a text-based user interface (TUI) that are not CLI. The relative merits of CLI- and GUI-based shells are often debated.

@ Kazuo Ishiguro: Discussion
@ Baroque Forms: Kandinsky

2 90's UK Literature
Command-line shells [edit)

See also: List of command-line interpreters

CS104: Lecture 5

A command-line interface (CLI) is an operating system shell that uses alphanumeric characters typed

on a keyboard to provide instructions and data to the operating system, interactively. For example, a COUNT 6
teletypewriter can send codes representing toa p program running on
the computer; the command interpreter parses the of and with an error

message if it cannot recognize the sequence of characters, or it may carry out some other program
action such as loading an application program, listing files, logging in a user and many others.
Operating systems such as UNIX have a large variety of shell programs with different commands,
syntax and capabilities, with the POSIX shell being a baseline. Some operating systems had only a
single style of interface; systems such as MS-DOS came with a
standard command interface (COMMAND.COM) but third-party interfaces were also often available,
providing additional features or functions such as menuing or remote program execution.

Command Prompt, a CLI shell in Windows &

rams may also implement a command-line interface. For example, in Unix-like

Graphical Shell

: Slide Subtitle

AF2AIRIOSH ASES

Filter Sort

O Class
MAT 630
HIST 230
LIT 455
ART 399
LIT 455

CscC1104

Search

O Type
Seminar
Section
Study Group
Reading
Lecture

Lecture

Materials

discrete.pdf

https:/fwww.th...

https:/fopen.s...

http://bits.usc....

Font
Wemakeprice
Regular

B I u

Character Styles

Text Color &

ro

=
Vertical Text
Spacing

Lines ¢

Before Paragraph

Use this template

» Design

¥ Education

“\ Class Notes

1 Job Applications
.~ Grade Calculator
% Club Homepage

2 Reading List

M Thesis Planning

Layout

¢ 48pt O

s ®v

None

it
[
1l

>

45 pt

T Cornell Notes System

= Personal CRM

& Roommate Space

3% Simple Budget
I syllabus

A Classroom Home
B Lesson Plans

@ Course Schedule
Y Class Directory

2 Browse more templates

0S: macO0S 11.1 20C69 x86-_64

Host: MacBookPro15,1

Kernel: 20.2.0

Uptime: 7 days, 17 hours, 4 mins

Packages: 105 (brew)

Shell: zsh 5.8

Resolution: 1680x1050@2x, 2560x144072x

DE: Aqua

WM: yabai

Terminal: kitty

Terminal Font: Ligalosevka Nerd Font Mono Medium 15.0
CPU: Intel i7-8750H (12) @ 2.20GHz

GPU: Intel UHD Graphics 63@, Radeon Pro 555X
Memory: [=

Battery: [

. KMMMMMMMMMMMMMMMMMMMMMMMWd .
XMMMMMMMMMMMMMMMMMMMMMMMX

), -L 1 ~/.config/nvim
[Users/pacokwon/.config/nvim

LICENSE

README .md

after

init.vim

lua

plugged

spell

4 directories, 3 files

A

Command-line Shell

) Shell (computing) - Wikipedia X =
&« > C 0 © & https://enwikipedia.org/wiki/Shell_(computing) B R4 v = 00
N - NOTIoogea M T2 Connouno eRE aceo oS
T S
Q0 Article Talk Read Edit View history | Search Wikipedia Q ;
N
%
e
WIKIPEDIA Shell (computing) .
i From Wikipedia, the free encyclopedia
Main page In computing, a shell is a computer program which exposes an operating system's services to a human user or 3
Contents other program. In general, operating system shells use either a command-line interface (CLI) or graphical user

Current events
Random article
About Wikipedia
Contact us
Donate

Contribute
Help

Learn to edit
Community portal
Recent changes
Upload file

Tools
What links here
Related changes
Special pages
Permanent link
Page information
Cite this page
Wikidata item

Print/export

Download as PDF
Printable version

In other projects

Wikimedia Commons
Wikibooks

Languages o]
ol

Espatiol

Frangais

#=0]

Bahasa Indonesia
Bahasa Melayu
Portugués

Pycekuit

HX
¥p 28 more

Edit links

https://en.wikipedia.org/wiki/File:X-Window-System.png

interface (GUI), depending on a computer's role and particular operation. It is named a shell because it is the
outermost layer around the operating system. ' 2]

Command-line shells require the user to be familiar with commands and their calling syntax, and to understand
concepts about the shell-specific scripting language (for example, bash).

Graphical shells place a low burden on beginning computer users, and are characterized as being easy to use. B -
Since they also come with certain disadvantages, most GUI-enabled operating systems also provide CLI shells. - |

Contents [hide] 3

1 Overview

2{Commeandline shells A graphical interface from the late 1980s, which &

features a TUI window for a man page, a shaped
window (oclock) as well as several iconified windows
In the lower right we can see a terminal emulator
running a Unix shell, in which the user can type

3 Graphical shells
3.1 Unix-like systems
3.2 Microsoft Windows

L}
4 Other uses commands as if they were sitting at a terminal.
5 See also
6 References
Overview | edit) l

Operating systems provide various services to their users, including file management, process management (running and terminating applications), batch processing,
and operating system monitoring and configuration.

Most operating system shells are not direct interfaces to the underlying kernel, even if a shell communicates with the user via peripheral devices attached to the
computer directly. Shells are actually special applications that use the kernel API in just the same way as it is used by other A shell the
user-system interaction by users for input, interpreting their input, and then handling an output from the underlying operating system (much like a read-eval—
print loop, REPL).[3! Since the operating system shell is actually an application, it may easily be replaced with another similar application, for most operating systems.

"\ Class Notes

simple list .+

In addition to shells running on local systems, there are different ways to make remote systems available to local users; such approaches are usually referred to as
remote access or remote administration. Initially available on multi-user mainframes, which provided text-based Uls for each active user simultaneously by means of a
text terminal connected to the mainframe via serial line or modem, remote access has extended to Unix-like systems and Microsoft Windows. On Unix-like systems, Reviewed Name
Secure Shell protocol is usually used for text-based shells, while SSH tunneling can be used for X Window Syst based graphical user (GUIs). On
Microsoft Windows, Remote Desktop Protocol can be used to provide GUI remote access, and since Windows Vista, PowerShell Remote can be used for text-based
remote access via WMI, RPC, and WS-Management.[]

B See All v Properties

& The Apportionment Problem

4 American Post-War Economics
Most operating system shells fall into one of two categories — command-line and graphical. Command line shells provide a command-line interface (CLI) to the
operating system, while graphical shells provide a graphical user interface (GUI). Other possibilities, although not so common, include voice user interface and various
implementations of a text-based user interface (TUI) that are not CLI. The relative merits of CLI- and GUI-based shells are often debated.

@ Kazuo Ishiguro: Discussion
@ Baroque Forms: Kandinsky

2 90's UK Literature
Command-line shells [edit)

See also: List of command-line interpreters

CS104: Lecture 5

A command-line interface (CLI) is an operating system shell that uses alphanumeric characters typed

on a keyboard to provide instructions and data to the operating system, interactively. For example, a COUNT 6
teletypewriter can send codes representing toa p program running on
the computer; the command interpreter parses the of and with an error

message if it cannot recognize the sequence of characters, or it may carry out some other program
action such as loading an application program, listing files, logging in a user and many others.
Operating systems such as UNIX have a large variety of shell programs with different commands,
syntax and capabilities, with the POSIX shell being a baseline. Some operating systems had only a
single style of interface; systems such as MS-DOS came with a
standard command interface (COMMAND.COM) but third-party interfaces were also often available,
providing additional features or functions such as menuing or remote program execution.

Command Prompt, a CLI shell in Windows &

rams may also implement a command-line interface. For example, in Unix-like

Graphical Shell

: Slide Subtitle

AF2AIRIOSH ASES

Filter Sort

O Class
MAT 630
HIST 230
LIT 455
ART 399
LIT 455

CscC1104

Search

O Type
Seminar
Section
Study Group
Reading
Lecture

Lecture

Materials

discrete.pdf

https:/fwww.th...

https:/fopen.s...

http://bits.usc....

Font
Wemakeprice
Regular

B I u

Character Styles

Text Color &

ro

=
Vertical Text
Spacing

Lines ¢

Before Paragraph

Use this template

» Design

¥ Education

“\ Class Notes

1 Job Applications
.~ Grade Calculator
% Club Homepage

2 Reading List

M Thesis Planning

Layout

¢ 48pt O

s ®v

None

it
[
1l

>

45 pt

T Cornell Notes System

= Personal CRM

& Roommate Space

3% Simple Budget
I syllabus

A Classroom Home
B Lesson Plans

@ Course Schedule
Y Class Directory

2 Browse more templates

Shell

HYAPISE SO} AT AL

User

. meNa e 0S AP

[sX=Xt

User

. meNa e 0S AP

HYAPISE SO} AT AL

M 2180t ?

= ArE0

Slafuls

M 2180t ?

= ArE0

Slafuls

10

) -c¢ "print('Wheel Seminar')"
Wheel Seminar

)

11

N
-
(O
-

el
=
D
D
1
(b
D
e
-

N’
-+
-
e
-

Q.
(&)

|

—
©
c
r
=
()]
V0
—
<))
(<))
Lo
——

)

QL =29| Objective: HY

12

#! [bin/bash
echo "Hello, SPARCS!Q

nN

) test.sh
Hello, SPARCS!

13

A E W= interpreters FA|

#! [bin/bash
echo "Hello, SPARCS!'S

#! S0 = BE9] interpreterE O] 26 IfY AO| 5!

zsh: permission denied: ./test.sh

-1 test.sh
-rw-r--r-- 1 pacokwon staff 34 Jan 3 20:18 test.sh
) u+x test.sh

) -1 test.sh
-rwxr--r-- 1 pacokwon staff 34 Jan 3 20:18

)
Hello, SPARCS!

(execution permission §0§ O|F &) 14

AR E U =0 interpreters TA
A: shebang handling@ HE9| 51=4, HE2 (PATHE H]

#! [bin/bash P & BARZ SO 947 Uh2of interpreterS 2 3
Ot A OIY| "H2 = tHA|oHOE TF AFCHH =0
echo "He]_]_o’ SPARCS IH tll:)E 7 AU E=2F BAIoHOF PICE (THIM ST EZ2 X 1SS

H
-
2
30
r|r
ox

29| interpreterE o| &0} O} Al¥o| 5!

zsh: permission denied: ./test.sh

-1 test.sh
-rw-r--r-- 1 pacokwon staff 34 Jan 3 20:18 test.sh
) u+x test.sh

) -1 test.sh
-rwxr--r-- 1 pacokwon staff 34 Jan 3 20:18

)
Hello, SPARCS!

(execution permission §0§ O|F &) 15

https://stackoverflow.com/questions/3009192/how-does-the-shebang-work
https://unix.stackexchange.com/questions/77512/why-not-use-pathless-shebangs
https://unix.stackexchange.com/questions/77512/why-not-use-pathless-shebangs

A E W= interpreters FA|
A: shebang handling@ HY9| 5}=4|, HE& (PATHE Hj

/bin/bash 29h RFEHAE SIATSIA| 9| Th20f interpreters & &
echo "Hello, SPARCS!'{ oy 50 FZE FABIOFPICH (TR HTHREE 52
_ A: PWD(R) B2)= PATHO| ¢11] T2

o U= &9 interpreters O| o O Ao| 5!

)

zsh: permission denied: ./test.sh
-1 test.sh
-rw-r--r-- 1 pacokwon staff 34 Jan 3 20:18 test.sh

) u+x test.sh

) -1 test.sh
-rwxr--r-- 1 pacokwon staff 34 Jan 3 20:18

)
Hello, SPARCS!

(execution permission §0§ O|F &) 16

https://stackoverflow.com/questions/3009192/how-does-the-shebang-work
https://unix.stackexchange.com/questions/77512/why-not-use-pathless-shebangs
https://unix.stackexchange.com/questions/77512/why-not-use-pathless-shebangs

A E W= interpreters FA|
A: shebang handling@ HY9| 5}=4|, HE& (PATHE Hj

#! /bin/bash Xt 2FEHAE i AMoHA| 81| ThEollinterpreterS & %
echo "Hello, SPARCS 'H O 4 R 'S'E SAISHOF PHCE (TFIM FTHEZ & s
’ ')

N

nN

10 Q= B29| interpreterE O|&4) I} A1g0| s A: PWD(HA] 82)& PATHO| G| THE.

)

zsh: permission denied: ./test.sh A: O|/Ll/c\5|(|3c)rt(:|I:]ility)I|_|--T',;PE = =X env commandS A}
-1 test.sh LI}

-rw-r--r-- 1 pacokwon staff 34 Jan 3 20:18 test.sh

) u+x test.sh

) -1 test.sh
-rwxr--r-- 1 pacokwon staff 34 Jan 3 20:18

)
Hello, SPARCS!

(execution permission §0§ O|F &) 17

https://stackoverflow.com/questions/3009192/how-does-the-shebang-work
https://unix.stackexchange.com/questions/77512/why-not-use-pathless-shebangs
https://unix.stackexchange.com/questions/77512/why-not-use-pathless-shebangs

A: O|AS(portability)at 2FAE! 2K|. env commandE Al
2B}
o .

#! [bin/bash
echo "Hello, SPARCS!"

#! fusr/bin/env bash
echo "Hello, SPARCS!"

"test.sh" 3L, 35C written "test.sh" 3L, 43C written

18

A: O|AS(portability)at 2FAE! 2K|. env commandE Al
2B}
o .

#! [bin/bash
echo "Hello, SPARCS!"

#! [usr/bin/env bash
echo "Hello, SPARCS!"

"test.sh" 3L, 35C written "test.sh" 3L, 43C written

19

A: o|Ald(portability)at 2FAE 24l env commandE At A: SE0] IHsTHAILIE] 2 (R 2 f?T oF0| @12). DaiL}
23} enve /usr/bin O QIAIPHE R} ZECTER THCH

#! [bin/bash
echo "Hello, SPARCS!"

#! [usr/bin/env bash
echo "Hello, SPARCS!"

"test.sh" 3L, 35C written "test.sh" 3L, 43C written

20

\/ariables 4

21

VARIABLE=VALUE HASO WS DRHHZ SHC}

buffers buffers

="Hello, - SPARCS!" ="Hello-¥orld"
=Hello
=12345
=3.141592
="3,141592"
=asd2341b
)

Hello, SPARCS!

19

TERMINAL / N zsh NORMAL test sh utf-8[unix] 25% =2/8 k:1
"test" 8L, 127C written

22

greet - O|E € inputC & Er2 §| QAT =&

-nameo|cr= B40) 0 FF X AT

What-1s-your -name?

2RI Otojl 4 U Q)

"Hello, L

NORMAL greet
33)
What is your name?
' paco
Hello, paco
zsh
"greet" 5L, 75C written

23

E]rEEEYt ()I ”1[Jljt:c>j§1 P{E%lgglﬁajl\rgg+%;§§5,

-nameo|cf= B0 Of] B X M

[
E N

What-1s-your -name?
name
"Hello,

) hame=paco
NORMAL greet)> .
33)

What is your name?

' paco
Hello, paco
zsh

"greet" 5L, 75C written

> 1

paco_file

24

"foo is:

="some-string"

"foo-is:

25

> foo=F00

="some-string" >
"foo-is: £00 is®
foo 1s: some string

"foo is:

A: LS. LI Y| 511 RI5HAM = exportdhof THCt

exportol™ ZFgHaN) EICH

26

> foo=F00

="some-string" >
"foo-is: £00 is®
foo 1s: some string

"foo is:

A: LS. LI Y| 511 RI5HAM = exportdhof THCt

exportol™ ZFgHaN) EICH

> export foo=F00
)

foo 1s: FOO
foo 1s: some string

> export foo=F00 > export foo=F00

"foo is:

="some-string" >) tE_St

foo is: FOO foo i1s: FOO

foo 1s: some string foo 1s: some string

) $foo) $foo
FOO some string

A: HTHARO| S£7E|R] QH=CH

AHARS DY WHEotD 40

sourceof™ =l

28

myname= myeditor= $EDITOR

$myname $myeditor
pacokwon fusr/local/bin/nvim

Bash performs the expansion by executing command in a subshell
environment and replacing the command substitution with the standard
output of the command, with any trailing newlines deleted
- man bash -

29

$0: TR AT EQ| I}AUT
$1 ~ $n: A TEE! argument = ("positional parameters”)
$#: 20| =< argument N4

$7: ™M PO 9] exit status

$$: 2| PID

$@: argumentl| 2|AE

$*: argumentQ| 2|AE

30

$0: IR AT EO| MW first second third fourth
$1 $2 $3 ¢4

$1 ~ $n: A TEE! argument = ("positional parameters”)

b A0 Y=l argument 4
¢ 7 A HAH0| 9] exit status

$$: 2| PID

$@: argumentl| 2|AE

$*: argumentQ| 2|AE

31

$0: PR AT EQ| I}

$1 ~ $n: A TEE! argument = ("positional parameters”)
$#: 20| =< argument N4

$7: 2™ H3HO{O| exit status

¢4 Mol PID : all positional parameters as a single word
: all positional parameters as separate strings
: both subject to word splitting

$@: argumentl| 2|AE

$*: argumentQ| 2|AE

32

$0: PR AT EQ| I}

$1 ~ $n: A TEE! argument = ("positional parameters”)
$#: 20| =< argument N4

$7: 2™ H3HO{O| exit status

¢4 Mol PID : all positional parameters as a single word
: all positional parameters as separate strings
: both subject to word splitting

$@: argumentl| 2|AE

(ME AT at-asterisk &)

$*: argumentQ| 2|AE

33

=38 cAtEE A8 UOAM escapek|O{OfF SHIE | EA|EILCT

) "Hello \"World\"" B> foo=HELLO bash-5.1$ echo "\\"

Hello "World") "\ $£00" I \
> "Hello "World"" $f00 bash-5.1$ echo "\\\\"

Hello World) \\
HELLO

34

greet I 2 1S 27961 0K = G|A|R|9)
hosthname©| €| &£ = ol 2 AH

What 1s your name? paco
Hello, paco. You are on Pacos-Machook-Pro.local

35

Operators ¢ A}

36

e expr $a <operator> $b

e $(($a <operator> $h))

'+7:7/7’°7+7 7*7/7’07**

o + (pre, post), — (pre, post)
' &7 ‘7 A’ N’ <<7 >>7 &=7 ‘= A=7 <<=7 >> =

37

) 'scale=4;20+5/2" |
bashoflM YA O 2= X|@ okgh 13jLL QI8 EEE O 22.5000

ol & = UL
2ol g 4 F) 'scale=4;20+5/3"' |

ex) Basic Calculator 21.6666

) 'scale=5;20+5/3" |
21.66666

) $((20+5/3))

2

38

Relational Operators

for integers values

=4 ojo]
[$A -gt $B] A>B
[$A -1t $B] A<B
[$A -ge $B] A =B
[$A -1e $B] A<B
[$A -eq $B] A =B
[$A -ne $B] A =+ B

39

for string values

Mo
1L

[$A = $B]

[$A = $B]

[$A \> $B]

[$A \< $B]

[-z $A]

[-n $A]

40

A 1s alphabetically greater than B

A 1s alphabetically lesser than B

A’s length is O

A’s length is not @

g 2|0

command12| exit statusZt @& UKt
commandl && command? command27t AlHE!

command12| exit status”f 1€ ot

command1 || command? command27h AlHEl

command1; command? adk S0t A

41

42

Relational Operators

for integers values

=4 ojo]
[$A -gt $B] A>B
[$A -1t $B] A<B
[$A -ge $B] A =B
[$A -1e $B] A<B
[$A -eq $B] A =B
[$A -ne $B] A =+ B

43

for integers values

= oj0|
[$A -gt $B] A > B
[$A -1t $B] A a=3;b=5
> | $a -1t $b | &6 "$a is lesser than $b"
3 1s lesser than b5

> | $a -gt $b | & "$a is lesser than $b"

44

numberef=
number | 40l

20 YN AR AT WIS ST,

Rl OIS THCKZE ARES AL

export a=10

a 1s positive!
a=-1

a 1s not positive!

45

Conditionals & H&+

46

If statement

if [expression]
then

commands
elif [expression]
then

commands
else

commands
fi

47

[expression |

commands

 expression]

commands .
1s-lesser-than

commands

1s-greater-than-or-equal-to

48

case statement

case [expression] in
PATTERN_1)
commands

PATTERN_2)
commands

PATTERN_3)
commands

*)77
commands

f1

49

 expression]

PATTERN_1)
commands -n - "Enter a country name: "
country
79
PATTERN_Z) -n- " 's capital is "
commands il
)9 Seoul
PATTERN_3) i
commands Tokyo
% " cC lhina
) Beijing
commands
X "...sorry I don't know"

(M= 2C case® D)

https://www.gnu.org/software/ bash/mngal/ html_node/Pattern-Matching.html#Pattern-Matching

Relational Operators

[o] Xl FX&Emt

51

[9] BAl= A&t

test(1)

test, [-- condition evaluation utility

test expression
[expression]

52

[= =M}

[[(POSIX equivalent)
e [15POSIX
« [[isbash extension [[a<b]] [a\<b]
[[a=a & b=0b]] [a=a]8&& [b=0D>b]
[[@=a] a=Db) & a=b]] {la=al]llla=bl; & [a=hb]
x="%7 b’; [[$X = ‘9 b’]] x="%7 b’; [“$X” = ‘9 b’]

53

UAl=

Hito C
cCcC o T

| SIS ML 2| EAH 5, 2Fef EAHTHCHH regular THEQIA| T EC]

|, 22 0122 IURNK| ==ot= HFE ==ol= AT ES EJolEAL

(man test & D)

/dev/stdout

[dev/stdout is some other file.
function
function is a regular file.

. 1s a directory.
hello
hello does not exist.

ijd

Loops =

LO
LO

i varl var? var3 ... ((i=0;1<100;i++))

commands commands

56

- QA UTHHME O

x
Pt
OFA
of

Brace Expansion

Tilde Expansion
Parameter Expansion
Command Substitution
Arithmetic Expansion
Word Splitting

Pathname Expansion

57

QR YT HUMT O 25 B

£1..9}

. Tilde Expansion 123456789

{fa..z}

« Parameter Expansion abcdefghijklmnopgqrstuvuwxyz

« Command Substitution

« Arithmetic Expansion someFile. {C’h}

» Word Splitting someFile.c someFile.h

» Pathname Expansion

58

- QA UTHHME O

x
Pt
OFA
of

» Brace Expansion

 Tilde Expansion

« Command Substitution

« Arithmetic Expansion
« Word Splitting

» Pathname Expansion

59

- QA UTHHME O

x
b
O
og

T
(1
fjo

O

orS 1| TO| O|FOA = &8 S WS SF W= 7
» Brace Expansion

. Tilde Expansion $((expression))

« Parameter Expansion

« Command Substitution

« Word Splitting

» Pathname Expansion

60

RS E bl Ril=te| o= 1| O O|FOA|= 232 s 8. SF W54 7

x
b
O
og

T
(1
fjo

O

» Brace Expansion

globbing

 Tilde Expansion
« Parameter Expansion

« Command Substitution

« Arithmetic Expansion

« Word Splitting

61

[condition |

commands

[condition |

commands

o TMEA]!

62

T AEE STOI THUY QIAHE of2q T 2o 1 MUy TS O]

2E0IM Sl S 2L 4+ AT AT ES ZIOlEAL

/dev/stdout function . hello

[dev/stdout is some other file.

function is a regular file.
. 1s a directory.
hello does not exist.

63

Functions &4

64

function_name() function function_name()

{ {

commands commands
return // optional return // optional

5 ;

65

function_name() function function_name()

{ {

commands commands
return // optional return // optional

5 ;

66

function_name() function function_name()

{ {

commands commands
return // optional return // optional

5 ;

6/

MALLE s

printToN()
{

printToN

}

printToN

(MZ 2C print-to-n%tn)

)
1
2
3
4
5
6
7
8
9
1

68

Argument must not be negative

69

JE]

70

/1

g4 27| AR4

| v st v shell

HE e= 2| ol 27|
16 304 core shell
15 =4 clamshell
14 Hlojd A bearing shell
13 Holg{Al boiler shell

11 MAscH shell mould
10 §|eAl head shell
9 A7, ojA Jenneke, Michelle

https://kornorms.korean.go.kr/example/exampleList.do?regltn_code=0003

/2

man =) builtin(1)0| = T

builtin, !, %, ., :, @, {, }, alias, alloc, bg, bind, bindkey, break, breaksw, builtins, case, cd, chdir,
command, complete, continue, default, dirs, do, done, echo, echotc, elif, else, end, endif, endsw, esac,
eval, exec, exit, export, false, fc, fg, filetest, fi, for, foreach, getopts, glob, goto, hash, hashstat,

history, hup, if, jobid, jobs, kill, limit, local, log, login, logout, ls-F, nice, nohup, notify, onintr,
popd, printenv, pushd, pwd, read, readonly, rehash, repeat, return, sched, set, setenv, settc, setty,
setvar, shift, source, stop, suspend, switch, telltc, test, then, time, times, trap, true, type, ulimit,
umask, unalias, uncomplete, unhash, unlimit, unset, unsetenv, until, wait, where, which, while -- shell
built-in commands

$ man bash
Of|A &AL

/3

u2
02
—
10

o /etc/profile

e ~/.bash_profile
e ~/.bash_login

e ~/.profile

e ~/ . bashrc

Login shellQ!X], interactiveTX|0]| T}2} sourcedt= &YO}UO| CIS.

man bashoj|A] “INVOCATION” HAH

74

of2 1K) WS

sh(1979) - HiZE. 7S A STANIS2| 22 AL

bash (1989) - sh 1J8FGNU Z2MIEo| ¥t O 2 AFM =l free software

zsh (1990) - sh 1|8 1| & shoj|A Cf2) 1) &0) FfE 2 A

fish (2005) - Friendly Interactive Shell. A4 TIZ}A0|n CHYPHISSS MBS

73

VS $((--)) vs ((--)) vs

e $(...) means execute the command in the parens in a subshell and return its
stdout. Example:

$ echo "The current date is $(date)"
The current date is Mon Jul 6 14:27:59 PDT 2015

e (...) means run the commands listed in the parens in a subshell. Example:
$ a=1; (a=2; echo "inside: a=$a"); echo "outside: a=$a"
inside: a=2

outside: a=1

e $((...)) means perform arithmetic and return the result of the calculation.
Example:

$ a=$((2+3)); echo "a=$a"
a=5

e ((...)) means perform arithmetic, possibly changing the values of shell
variables, but don't return its result. Example:

$ ((a=2+3)); echo "a=$a"
a=5

e ${...} means return the value of the shell variable named in the braces.
Example:

$ echo ${SHELL}
/bin/bash

e {...} means execute the commands in the braces as a group. Example:

$ false || { echo "We failed"; exit 1; }
We failed

https://stackoverflow.com/questions/31255699/double-parenthesis-with-and-without-dollar

/6

PN
. 18YE & M|OJLt Shell Script 2
o SICIa0| 2212 ALE

(&4

