
LOKA
Smart Contract Security Analysis

Published on : Dec 13, 2021

Version v2.0

COPYRIGHT 2021. HAECHI AUDIT. all rights reserved

Smart Contract Audit Certificate

LOKA

Security Report Published by HAECHI AUDIT

v1.0 Dec 06, 2021

v2.0 Dec 13, 2021

Auditor : Hoon Won

Executive Summary

Severity of Issues Findings Resolved Unresolved Acknowledged Comment

Critical - - - - -

Major 1 1 - - All issues

resolved

Minor 1 - - - -

Tips 2 2 - - All issues

resolved

COPYRIGHT 2021. HAECHI AUDIT. all rights reserved
1

TABLE OF CONTENTS

2 Issues (0 Critical, 1 Major, 1 Minor) Found

TABLE OF CONTENTS

ABOUT US

INTRODUCTION

SUMMARY

OVERVIEW

FINDINGS

Membership#transferOwner() function works abnormally.

When LOKA#take() function is called, the user may not take the assigned token.

There are missing Events.

There are functions not in use.

DISCLAIMER

Appendix A. Test Results

COPYRIGHT 2021. HAECHI AUDIT. all rights reserved
2

ABOUT US

HAECHI AUDIT believes in the power of cryptocurrency and the next paradigm it will bring. We

have the vision to empower the next generation of finance. By providing security and trust in the

blockchain industry, we dream of a world where everyone has easy access to blockchain

technology.

HAECHI AUDIT is a flagship service of HAECHI LABS, the leader of the global blockchain

industry. HAECHI AUDIT provides specialized and professional smart contract security

auditing and development services.

We are a team of experts with years of experience in the blockchain field and have been

trusted by 300+ project groups. Our notable partners include Universe,1inch, Klaytn,

Badger, etc.

HAECHI AUDIT is the only blockchain technology company selected for the Samsung

Electronics Startup Incubation Program in recognition of our expertise. We have also

received technology grants from the Ethereum Foundation and Ethereum Community

Fund.

Inquiries: audit@haechi.io

Website: audit.haechi.io

COPYRIGHT 2021. HAECHI AUDIT. all rights reserved
3

INTRODUCTION

This report was prepared to audit the security of Claimant smart contract created by

LOKA team. HAECHI AUDIT conducted the audit focusing on whether the smart

contract created by LOKA team is soundly implemented and designed as specified in

the published materials, in addition to the safety and security of the smart contract.

Critical issues must be resolved as critical flaws that can harm a

wide range of users.

Major issues require correction because they either have security

problems or are implemented not as intended.

Minor issues can potentially cause problems and therefore require

correction.

Tips issues can improve the code usability or efficiency when

corrected.

HAECHI AUDIT recommends LOKA team improve all issues discovered.

The following issue explanation uses the format of {file name}#{line number}, {contract

name}#{function/variable name} to specify the code. For instance, Sample.sol:20 points

to the 20th line of Sample.sol file, and Sample#fallback() means the fallback() function

of the Sample contract.

Please refer to the Appendix to check all results of the tests conducted for this report.

COPYRIGHT 2021. HAECHI AUDIT. all rights reserved
4

SUMMARY

The codes used in this Audit can be found at GitHub

(https://github.com/HAECHI-LABS/LOKA-audit/blob/master/contracts/LOKA.sol). The

last commit of the code used for this Audit is

“0ccafdca674b94f2b9638fbcacf1efbb35fd5011”.

Issues HAECHI AUDIT found 0 critical issues, 1 major issue, and 1 minor

issue. There are 2 tips explained that would improve the code’s

usability or efficiency upon modification.

update [v.2.0] In the new commit,

697100a2dd463cfa9bbee5c41b06bb55ebf839fc, 1 major issue

and 2 tips have been modified.

Severity Issue Status

Membership#transferOwner() function works

abnormally.

(Found - v1.0)

(Resolved - v2.0)

When LOKA#take() function is called, the user may

not take the assigned token.

(Found - v1.0)

There are missing Events. (Found - v1.0)

(Resolved - v2.0)

There are functions not in use. (Found - v1.0)

(Resolved - v2.0)

COPYRIGHT 2021. HAECHI AUDIT. all rights reserved
5

https://github.com/HAECHI-LABS/LOKA-audit/blob/master/contracts/LOKA.sol

OVERVIEW

Contracts subject to audit

❖ ERC20

❖ ERC20Capped

❖ Ownable

❖ Membership

❖ LOKA

❖ Claimant

COPYRIGHT 2021. HAECHI AUDIT. all rights reserved
6

FINDINGS

Membership#transferOwner() function works abnormally.

(Found - v.1.0) (Resolved - v.2.0)

598 function transferOwner(address newOwner) public onlyOwner {

599 address preOwner = owner;

600 owner = newOwner;

601 emit OwnerTransferred(preOwner, newOwner);

602 setMembership(preOwner, 0);

603 setMembership(newOwner, 1);

604 }

605

606 function setMembership(address key, uint256 level) public onlyOwner {

607 membership[key] = level;

608 emit MembershipChanged(key, level);

609 }

610

611 modifier onlyOwner() {

612 require(isOwner(), "Membership : caller is not the owner");

613 _;

614 }

615

616 function isOwner() public view returns (bool) {

617 return _msgSender() == owner;

618 }

[https://github.com/HAECHI-LABS/LOKA-audit/blob/master/contracts/LOKA.sol#L598-L618]

Issue

Membership#transferOwner() the owner by adjusting the memberships of preOwner

and newOwner after changing the internal Membership#owner variable with input

newOwner.

However, at the time when Membership#setMembership() function is called in

LOKA.sol:602-603, Membership#owner has already been replaced. Thus, the preOwner

corresponding to msg.sender at that point cannot pass the onlyOwner modifier of

Membership#setMembership() function. Accordingly, a call of

Membership#transferOwner() is always reverted.

COPYRIGHT 2021. HAECHI AUDIT. all rights reserved
7

Recommendation

It is recommended to modify the logic appropriately so that theMembership#owner

variable update occurs after the adjustment of the memberships of preOwner and

newOwner.

Update

[v2.0] - The problem has been resolved by fixing the logic so that the

Membership#owner variable update occurs after the adjustment of the membership of

preOwner and newOwner.

COPYRIGHT 2021. HAECHI AUDIT. all rights reserved
8

When LOKA#take() function is called, the user may not take the assigned token.

(Found - v.1.0)

663 mapping(address => uint256) private _allocates;

664 function _allocate(address addr, uint256 amount) internal virtual {

665 _allocates[addr] += amount;

666 }

667 function allocate(address addr, uint256 amount) public onlyOwner {

668 _allocate(addr, amount);

669 }

670 function allocateOf(address account) public view virtual returns (uint256) {

671 return _allocates[account];

672 }

673 function take(address addr, uint256 amount) public {

674 address sender = _msgSender();

675 require(_allocates[sender]>=amount, "TokenVesting: No takable amount");

676 _allocates[sender] -= amount;

677 _mint(addr, amount);

678 }

[https://github.com/HAECHI-LABS/LOKA-audit/blob/master/contracts/LOKA.sol#L663-L678]

Issue

LOKA#take() function mints the token allocated from LOKA#allocate() function in

advance by the amount to the addr input as a parameter.

However, when calling LOKA#allocate() function, it does not check whether totalSupply

+ amount is less thanERC20Capped#_cap. Thus, at the time when LOKA#take() function

is called, if totalSupply + amount exceeds ERC20Capped#_cap , the call becomes

reverted. Accordingly, a user who is assigned a certain amount of via LOKA#allocate()

function may be unable to take the token via LOKA#take().

Acknowledgement

If the implementation is as intended, no modification is necessary.

COPYRIGHT 2021. HAECHI AUDIT. all rights reserved
9

There are missing Events.

(Found - v.1.0) (Resolved - v.2.0)

The following list shows the function missing Event.

Function Expected Event Emitted Event Omitted Event

mint Transfer, Mint Transfer Mint

Without Event, it is difficult to identify in real-time whether correct values are recorded

on the blockchain. In this case, it becomes problematic to determine whether the

corresponding value has been changed in the application and whether the

corresponding function has been called.

Thus, we recommended adding Events corresponding to the change occurring in the

function.

Update

[v2.0] - The missing Event has been added.

COPYRIGHT 2021. HAECHI AUDIT. all rights reserved
10

There are functions not in use.

(Found - v.1.0) (Resolved - v.2.0)

125 function _msgData() internal view virtual returns (bytes calldata) {

126 return msg.data;

127 }

[https://github.com/HAECHI-LABS/LOKA-audit/blob/master/contracts/LOKA.sol#L125-L127]

397 function _burn(address account, uint256 amount) internal virtual {

398 require(account != address(0), "ERC20: burn from the zero address");

399

400 _beforeTokenTransfer(account, address(0), amount);

401

402 uint256 accountBalance = _balances[account];

403 require(accountBalance >= amount, "ERC20: burn amount exceeds balance");

404 unchecked {

405 _balances[account] = accountBalance - amount;

406 }

407 _totalSupply -= amount;

408

409 emit Transfer(account, address(0), amount);

410

411 _afterTokenTransfer(account, address(0), amount);

412 }

[https://github.com/HAECHI-LABS/LOKA-audit/blob/master/contracts/LOKA.sol#L397-L412]

Issue

Context#_msgData() function and ERC20#_burn() function are not in use.

Update

[v2.0] - The unused Context#_msgData() function and ERC20#_burn() function have

been deleted.

COPYRIGHT 2021. HAECHI AUDIT. all rights reserved
11

DISCLAIMER

This report does not guarantee investment advice, the suitability of the business

models, and codes that are secure without bugs. This report shall only be used to

discuss known technical issues. Other than the issues described in this report,

undiscovered issues may exist such as defects on the main net . In order to write

secure smart contracts, correction of discovered problems and sufficient testing

thereof are required.

COPYRIGHT 2021. HAECHI AUDIT. all rights reserved
12

Appendix A. Test Results

The following results show the unit test results covering the key logic of the smart

contract subject to the security audit. Parts marked in red are test cases that failed to

pass the test due to existing issues.

Claimant

#constructor()

✓ should set LOKA token properly

✓ LOKA token contract should be set to admin

#initialize()

✓ should fail if msg.sender is not admin

valid case

✓ Claimant contract should be initialized properly

#register()

✓ should fail if msg.sender is not admin

valid case

✓ account should be set to claimant

#claim()

✓ should fail if msg.sender is not claimant

✓ should fail if current time is less than started

✓ should fail if msg.sender has no claimable amount (45ms)

valid case

✓ case: t = 0

✓ case: t = 0 + 9

✓ case: t = 0 + 9 + 4 (41ms)

✓ case: t = 0 + 9 + 4 + 10 (sequence > times) (55ms)

✓ case: t = 0 + 9 + 4 + 10 + 10 (sequence > times) (64ms)

#totalClaimed()

✓ should return claimed properly

#getStarted()

✓ should return started properly

#getTerm()

✓ should return term properly

#getBlockTimestamp()

✓ should return timestamp properly

Membership

#constructor()

✓ should set msg.sender to owner

✓ should set msg.sender to admin

COPYRIGHT 2021. HAECHI AUDIT. all rights reserved
13

#transferOwner()

✓ should fail if msg.sender is not owner

valid case

1) owner should be nonOwner

2) owner should be nonAdmin

3) newOwner should be owner

4) newOwner should be admin

5) should emit OwnerTransferred event

#setMembership()

✓ should fail if msg.sender is not owner

valid case

✓ membership should be set properly

✓ should emit MembershipChanged event

Ownable

#constructor()

✓ should set msg.sender to owner

#transferOwnership()

✓ should fail if msg.sender is not owner

✓ should fail if try to transfer ownership to AddressZero

valid case

✓ should change owner to newOwner

✓ should emit OwnershipTransferred event

#renounceOwnership()

✓ should fail if msg.sender is not owner

valid case

✓ should change owner to AddressZero

✓ should emit OwnershipTransferred event

LOKA

#constructor()

✓ should fail if cap is zero

✓ should set name properly

✓ should set symbol properly

✓ should set decimals properly

✓ should set initial supply properly

ERC20 Spec

#transfer()

✓ should fail if recipient is ZERO_ADDRESS

✓ should fail if sender's amount is lower than balance

when succeeded

✓ sender's balance should decrease

✓ recipient's balance should increase

✓ should emit Transfer event

COPYRIGHT 2021. HAECHI AUDIT. all rights reserved
14

#transferFrom()

✓ should fail if sender is ZERO_ADDRESS

✓ should fail if recipient is ZERO_ADDRESS

✓ should fail if sender's amount is lower than transfer amount

✓ should fail if allowance is lower than transfer amount

✓ should fail even if try to transfer sender's token without approve process

when succeeded

✓ sender's balance should decrease

✓ recipient's balance should increase

✓ should emit Transfer event

✓ allowance should decrease

✓ should emit Approval event

#approve()

✓ should fail if spender is ZERO_ADDRESS

valid case

✓ allowance should set appropriately

✓ should emit Approval event

#increaseAllowance()

✓ should fail if spender is ZERO_ADDRESS

✓ should fail if overflows

valid case

✓ allowance should set appropriately

✓ should emit Approval event

#decreaseAllowance()

✓ should fail if spender is ZERO_ADDRESS

✓ should fail if overflows

valid case

✓ allowance should set appropriately

✓ should emit Approval event

ERC20 Mintable spec

#mint()

✓ should fail if msg.sender is not minter

✓ should fail if try to mint more than cap

✓ should fail if try to mint to ZERO_ADDRESS

valid case

✓ receiver's amount should increase

✓ totalSupply should increase

✓ should emit Transfer event

6) should emit Mint event

LOKA Spec

#allocate()

✓ should fail if msg.sender is not owner

7) should fail if totalSupply + amount is greater than cap

valid case

COPYRIGHT 2021. HAECHI AUDIT. all rights reserved
15

✓ accounts' allocates should increase

#take()

✓ should fail if msg.sender has not takable amount

✓ should fail if totalSupply + amount is greater than cap

valid case

✓ accounts' balance should increase

#retain()

✓ should fail if msg.sender is not owner

✓ should fail if totalSupply + amount is greater than cap

✓ should fail if address is not contract

valid case

✓ Claimant contract's LOKA balance should increase

✓ Claimant contract should be initialized properly

Unused

✓ #_msgData()

✓ #_burn()

File % Stmts % Branch % Funcs % Lines Uncovered

Lines

contracts/

LOKA.sol 100 100 100 100

[Table 1] Test Case Coverage

COPYRIGHT 2021. HAECHI AUDIT. all rights reserved
16

End of Document

COPYRIGHT 2021. HAECHI AUDIT. all rights reserved
17

